
Schoof-Elkies-Atkin Algorithm

Ben Galin∗

bengalin@stanford.edu

Senior Thesis
Department of Mathematics

Stanford University

December 12, 2007

∗The author would like to express his sincere gratitude to his thesis advisor, Prof. Gunnar
Carlsson, and his degree advisor, Prof. Dan Bump.

This work is licensed under the Creative Commons Attribution 2.5 License. To view a
copy of this license, visit http://creativecommons.org/licenses/by/2.5. Source code with
limited rights can be found at http://www.bens.ws/professional.php.

1

1 Introduction

Following a timeworn naming convention, we assume that two people, Alice and
Bob, would like to communicate in a secure manner through an insecure channel.
Their cryptographic goals can be summarized as follows [16]:

1. Confidentiality : the content of the message is unknown to any third-party.

2. Data integrity : no third-party can change the content of the message in an
undetected manner.

3. Authentication: a recipient of a message can detect the origin of the message.

4. Non-repudiation: a sender of a message cannot later deny the origin or content
of a message.

If Alice and Bob can agree somehow on a secret key, they may be able to encrypt
their messages such that if Eve, an eavesdropper, is intercepting the communication,
she would be unable to recover the original message or alter its content in an unde-
tectable manner. This would satisfy the first two goals above. Assuming that this
secret key is only known to Alice and Bob, it’s a small stretch of the imagination to
see how the other two goals can be satisfied.

A cryptosystem based on the property above is called symmetric-key cryptogra-
phy. This is to be contrasted with public-key cryptography. Public-key cryptography
owes it origin to the 1976 article by Diffie and Hellman [8]. It is based on the idea
that each participant generates two keys, one private and one public. The public
key PA of Alice is used by her partner, Bob, to encrypt a message he wishes to send
to Alice. When Alice receives the ciphertext, she uses her private key pA to decrypt
the message.

One of the main advantages of public-key cryptography is obvious: in a system
of n users, there is no need to distribute securely—and maintain the security of—
(n2−n)/2 symmetric keys. Instead, each participant only needs access to the n− 1
public keys of the other parties. However, one notable disadvantage of public-key
cryptography in comparison to symmetric-key cryptography is that the latter allows
a much faster encryption and decryption of messages [16].

In Section 2, we provide the essential background information to a specific type
of a public-key cryptosystem, known as the Elliptic Curve Cryptography (ECC).
The overview in that section is not meant to be comprehensive by any means; a
reader with background in ECC would find the material insufficient and simplified.
Instead, one should view Section 2 as a motivation to the rest of the discussion.

The focus of this paper is on the SEA algorithm, which is one of the leading
algorithms for point-counting, a concept that will be defined later. In Section 3,
we introduce and build on the mathematical foundation needed in discussing point-
counting in general and the SEA algorithm in particular. The theory behind elliptic

2

curves is rich and complex. Therefore, we find it essential to refer the reader to
other sources when elementary proofs cannot be found.

Section 4 includes the main exposition of this paper. It introduces Schoof’s al-
gorithm to determine the number of points on a curve, and then expands on this
algorithm with Atkin’s and Elkies’ improvements. Once again, we shall occasionally
encounter concepts that are beyond the scope of this paper and provide sources
where proofs can be obtained. As elsewhere in modern cryptography, the mathe-
matical theory is used to develop algorithms so that computations will be carried
out by computers. To assist the reader in following this transition, we will work
out a number of simple examples in an algorithmic fashion. We will conclude this
section with a pseudo-code version of the SEA algorithm itself.

3

2 Overview of Elliptic Curve Cryptography

In this section we present an overview of ECC. We start by defining the Weierstrass
equation of an elliptic curve and the group structure of the K-rational points of an
elliptic curve, where K is a finite field. We then introduce the discrete logarithm
problem (DLP) cryptographic primitive and show how it is applied to ECC. To con-
clude, we present an implementation example, the Elliptic Curve Digital Signature
Algorithm (ECDSA).

2.1 Group structure

Let K be a finite field, K∗ be its multiplicative group, and K be its algebraic closure.
Our goal in this section is to first define elliptic curves and then construct a cyclic
group G corresponding to a given elliptic curve E/K. The group elements are a
subset of the so-called K-rational points. Using projective coordinates, we shall
see that an elliptic curve E has one point of infinity, which we shall denote by O.
We will endow the set of points on the curve with a group operation ⊕, such that
O is the identity element. Lastly, we will show that the K-rational points form a
subgroup.

Following the treatment in [9], we define an elliptic curve E over K as follows:

Definition 1. An elliptic curve E over a field K is given by the affine Weierstrass
equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 , (1)

where the coefficients ai are in the underlying field K, and for each point (x1, y1) ∈
K satisfying Equation (1), the partial derivatives 3x2

1 + 2a2x1 + a4 − a1y1 and
2y1 + a1x1 + a3 do not vanish simultaneously.

We write E/K for an elliptic curve E over K. When the underlying field is
understood from the context, we may simply write E.

Let E/K be an elliptic curve with a Weierstrass equation (1). Write its equation
with homogeneous coordinates in the projective plane P2(K) by setting x = X

Z and
y = Y

Z :
Y 2Z + a1XY Z + a3Y Z

2 = X3 + a2X
2Z + a4XZ

2 + a6Z
3 . (2)

With these homogeneous coordinates, the line of infinity is Z = 0. Thus, the
intersection of the line of infinity with the elliptic curve E yields the equationX3 = 0
and a single point of infinity [0, 1, 0]. We denote this point of infinity by O. Note
that the partial derivative of Equation (2) with respect to Z is a2X

2 + 2a4XZ +
3a6Z

2 − Y 2 − a1XY − 2a3Y Z, which does not vanish at [0, 1, 0].
We say that a point P = (x, y) is on an elliptic curve E/K if its coordinates

are a solution to the Weierstrass equation of E, which implies that x and y are in
the algebraic closure K of K. Our next goal is to separate points P on E with
coordinates in K from the rest of the points.

4

Definition 2. Let E/K be an elliptic curve. For any field L with K ⊆ L ⊆ K,
an ordered pair (x, y) is called an L-rational point of E if x and y lie in the field L
and (x, y) is a solution to the Weierstrass equation of E. In addition, we define the
point of infinity O to be an L-rational point.

The set of all L-rational points of E is denoted by E(L), and its cardinality is
denoted by |E(L)|. We shall be mainly interested in K-rational points (that is, the
case L = K).

Next, we define a group operation ⊕ on an elliptic curve E/K. First, we let O
be the identity element, so O⊕P = P ⊕O = P and P ⊕−P = O for point P on E.
Let P1 = (x1, y1) and P2 = (x2, y2) be points on E. Then P1 ⊕ P2 = (x3, y3) with

−P1 = (x1,−y1 − a1x1 − a3) ,

P1 ⊕ P2 =
(
λ2 + a1λ− a2 − x1 − x2, λ(x1 − x3)− y1 − a1x3 − a3

)
,where

λ =


y1 − y2

x1 − x2
if P1 6= ±P2 ,

3x2
1 + 2a2x1 + a4 − a1y1

2y1 + a1x1 + a3
if P1 = P2 .

Proving that (E/K,⊕) is indeed a group is a straightforward process, albeit a
tedious one. The associative rule, in particular, is painful. The group (E/K,⊕) is,
in fact, abelian: Let P2 ⊕ P1 = (x4, y4) and observe that y1−y2

x1−x2
= y2−y1

x2−x1
, so λ is

invariant. Then

x3 = λ2 + a1λ− a2 − x1 − x2 = x4 ,

y3 = λ(x1 − x3)− y1 − a1x3 − a3 = λ(x2 − x3) + λ(x1 − x2)− y1 − a1x3 − a3

= λ(x2 − x3)− y2 − a1x3 − a3 = y4 .

We have defined a group operation on the entire set of points P on an elliptic
curve E/K. However, we shall be mainly interested in K-rational points. From
the definition of ⊕, it is clear that if P1 and P2 are K-rational points, then so are
P1 ⊕ P2 and −P1, so (E(K),⊕) is indeed a subgroup of (E/K,⊕).

Henceforth, we shall write E/K and E(K) in favor of (E/K,⊕) and (E(K),⊕),
respectively, for the groups.

2.2 Discrete logarithm problem

In this section we begin relating the concepts defined above with the field of elliptic
curve cryptography. The following definition is the cornerstone of ECC.

5

Definition 3. Let E/K be an elliptic curve. We define the scalar multiplication by
n, where n is a positive integer, as a function

[n] : E/K → E/K

P 7→ [n]P = P ⊕ · · · ⊕ P︸ ︷︷ ︸
n times

.

We extend this definition to all integers n by defining [0]P = O and [n]P = [−n](−P)
for n < 0. Note that if P is a K-rational point, than so is [n]P . Thus, the restriction
of [n] to the subgroup of K-rational points E(K), yields a map [n] : E(K)→ E(K).

We build on Definition 3 to introduce the district log problem, which is most
commonly applied on cyclic groups of prime order. Note however that the group of
K-rational points E(K) need not be a cyclic group. In the remainder, we will let G
be a cyclic subgroup of E(K) of some prime order l.

Definition 4. Let G ≤ E(K) be a group of prime order l, and let P,Q ∈ G with
P 6= O. Then the discrete logarithm of Q with respect to P is an integer n such that
Q = [n]P .

Note that computing the discrete logarithm n can be done, and is unique, modulo
l. The problem of finding the discrete logarithm of Q with respect to P for an
arbitrary pair of elements P,Q ∈ G is called the discrete logarithm problem (DLP)
in G.

As explained by Avanzi [2], the complexity of solving the DLP in G is determined
by the structure and representation of G. For instance, Lagrange’s theorem asserts
that there is only one group, up to isomorphism, of prime order l, so the DLP
in G can be transformed to the one in (Z/lZ,+). On the other hand, G can be
embedded into the multiplicative group of Fr as the group of l-th roots of unity,
where l divides r − 1. However, Avanzi [2] shows that the DLP in this group is
harder than in (Z/lZ,+).

In general, the DLP is considered a hard problem to solve for many finite cyclic
groups of large order, though much care should be practiced in choosing the exact
group. As such, the DLP is used as a cryptographic primitive, and a number of
DLP-based cryptosystems have emerged. Examples of such cryptosystems are the
ElGamal encryption, the Diffie-Hellman key exchange, and the elliptic curve digital
signature algorithm systems. The last systems is discussed in some more detail in
Section 2.4.

2.3 Security of ECC

With a careful choice of an elliptic curve E, an underlying field K, and the cyclic
subgroup G ≤ E(K), the corresponding elliptic curve cryptosystem can provide the
same level of security as the integer-factorization based system RSA, while allowing
significantly smaller key sizes [23].

6

A standard way of assessing the level of security provided by a cryptosystem is
to determine complexity of the best known attack algorithm against it [3]. Here,
complexity is defined as follows:

Definition 5. Let Alg be an algorithm depending on N . Define

LN (α, c) = exp
(
c(lnN)α(ln lnN)1−α

)
,

where 0 ≤ α ≤ 1 and c > 0. Then Alg is said to be exponential in N if its running
time is bounded from above by a function proportional to LN (1, c); it is polynomial in
N if its running time is bounded from above by a function proportional to LN (0, c);
and it is subexponential in N if its running time is bounded from above by a function
proportional to LN (α, c) for α < 1.

Note that the designation exponential refers to exponential in the logarithm of
the order. In other words, an exponential algorithm in the group order |G| is one
that requires no more than |G|C group compositions, where C is a positive constant.
It is known [2], that for any cyclic group we have C ≤ 1/2.

As discussed in [2], [16], and [15], at present there are no generic subexponential
algorithms to solve the DLP, where a generic algorithm is defined to be one which
only performs composition, inversion, and equality checking. Examples of generic
algorithms are the Chinese remainder theorem (CRT), Pollard’s rho method, and
the baby-step/giant-step (BSGS) algorithm. We will see an algorithm related to the
BSGS algorithm in Section 4.6.

For curves with additional properties, some of which will be described later,
there are subexponential algorithms that may be used to solve the DLP, such as the
index calculus attack and Weil descent. We invite the reader to refer to the excellent
surveys by Avanzi and Thériault [4] and Frey and Lange [10] for more details about
different algorithms, as well as additional references.

In Table 1, adapted from the National Institute of Standards and Technol-
ogy publication [5], we provide a comparison of key sizes between (i) finite field
cryptography (FFC), such as Diffie-Hellmand key exchange and DSA; (ii) integer-
factorization cryptography (IFC), such as RSA; and (iii) elliptic curve cryptography
(ECC), such as ECDSA, which will be explained in Section 2.4.

Bits of security FFC IFC ECC
80 1024 for public, 160 for private 1024 160–223
112 2048 for public, 224 for private 2048 224-255
128 3072 for public, 256 for private 3072 256–383
192 7680 for public, 384 for private 7680 384–511
256 15360 for public, 512 for private 15360 512+

Table 1: Comparison of key sizes

7

The reason for the striking difference in key sizes between ECC and the other
two leading cryptosystems is that there are known subexponential algorithms to
break FFC and IFC systems (see [3] and [15]). Therefore, in order to achieve the
same level of security, one needs shorter keys when using an ECC-based system in
comparison to RSA or non ECC-based DLP systems. This represents a significant
advantage of ECC over other systems when hardware resources are limited.

2.4 Implementation example: ECDSA

In this section we provide an example for an elliptic curve cryptosystem imple-
mentation. Specifically, we describe the Elliptic Curve Digital Signature Algorithm
(ECDSA), which is an ElGamal-like digital signature algorithm, based on ECC. A
digital signature algorithm is comprised of two separate algorithms, one for signing
a message by the sender and the other for verifying the signature by the recipient.
In the first algorithm, Alice, the sender, appends to a message m a signature (r, s)
that depends on her private key pA and the content of the message itself. Bob, the
recipient, verifies the signature, using the knowledge of Alice’s public key PA.

In the context of elliptic curve cryptosystems, we define the following tuple of
domain parameters D = (q,FR, a4, a6, P, l, c):

• q is the field characteristic;

• FR is a field representation of Fq;

• a4 and a6 are the coefficients of the short Weierstrass equation of E, an elliptic
curve over Fq;

• P = (xP , yP) is an Fq-rational base point;

• l is the order of a prime cyclic subgroup of Fq, which contains P ; and

• c = |E(Fq)|/l.

We shall assume that the domain parameters are known to all parties and possibly
to intruders, as well.

We present the digital signature algorithm in the context of ECC, as adapted
from [15]. A simple key generation algorithm is presented in Figure 1. This algo-
rithm is based on the difficulty to solve the discrete log problem in the group of
Fq-rational points. The algorithm in Figure 2 describes the signature procedure of
ECDSA, and the algorithm in Figure 3 illustrates the verification procedure. We
assume that both parties have agreed on a hash function h, where we recall from [3]
that a hash function h : S → T is a function that is

1. Pre-image resistant, in the sense that for almost all t ∈ T it is computationally
infeasible to find s ∈ S such that h(s) = t;

8

2. Second pre-image resistant, in the sense that for any s1 ∈ S it is computation-
ally infeasible to find s2 ∈ S such that h(s1) = h(s2); and

3. Collusion resistant, in the sense that it is computationally infeasible to find
distinct s1, s2 ∈ S such that h(s1) = h(s2).

It is important to note that the algorithms we present are not ready for use as-
is. For instance, in the key generation algorithm we allow pA = 1, which is clearly
not desirable. A comprehensive specification can be obtained from the ANSI X9.62
standard [1].

GenerateKey(D)
Input: The domain parameters D.
Output: A private key pA and a public key PA.

1. select a random integer pA ∈ [1, l − 1]
2. PA ← [pA]P
3. return pA and PA

Figure 1: ECC key generation

SignatureECDSA(D,h, pA,m)
Input: The domain parameters D, a hash function h, the sender’s private key pA, and
a message m.
Output: A signature (r, s) on the message m.

1. select a random integer k ∈ [1, l − 1]
2. (x1, y1)← [k]P
3. r ← x1 mod l
4. if r = 0 then go to step 1
5. s← k−1(h(m) + pAr)) mod l
6. if s = 0 then go to step 1
7. return (r, s)

Figure 2: ECDSA signature

9

VerificationECDSA(D,h, PA,m, (r, s))
Input: The domain parameters D, a hash function h, the sender’s public key PA, a
message m, and a signature (r, s) on m.
Output: true if (r, s) is a valid signature of m, false otherwise.

1. if r, s /∈ [1, l − 1] then return false
2. (x1, y1)← [h(m)s−1]P ⊕ [rs−1]PA

3. if x1 ≡ r (mod l) then return true
4. return false

Figure 3: ECDSA verification

The verification algorithm return the correct resolution, as can be verified by

(x1, y1) = [h(m)s−1]P ⊕ [rs−1]PA =
[

h(m)k
h(m)+pAr

]
P ⊕

[
rk

h(m)+pAr

]
PA

=
[

h(m)k
h(m)+pAr

]
P ⊕

[
pArk

h(m)+pAr

]
P =

[
k(h(m)+pAr)

h(m)+pAr

]
P = [k]P ,

as needed.

10

3 Arithmetic of Elliptic Curves

In this section we examine properties of elliptic curves that are essential in the
development of the SEA algorithm. Our first step is to introduce a shorter form
of the Weierstrass equation. To that end, we will define curve isomorphisms and
survey some of their properties. Curve isomorphism and the scalar multiplication
maps are special cases of curve isogenies, which we shall introduce next. Towards
the end of this section, we will take a detour into the beautiful theory of complex
analysis as a prelude to defining the division and modular polynomials. This will
equip us with all the necessary tools before taking a stab at the SEA algorithm.

3.1 Isomorphism and short Weierstrass equations

Let K be a finite field and E/K be an elliptic curve with the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 . (1)

We wish to associate to E two constants: the discriminant and the absolute invariant
(also called the j-invariant). To that end, it is useful to introduce the following
constants:

b2 = a2
1 + 4a2 , b4 = 2a4 + a1a3 , b6 = a2

3 + 4a6 ,

b8 = a2
1a6 − a1a3a4 + 4a2a6 + a2a

2
3 − a2

4 = (b2b6 − b24)/4 ,
c4 = b22 − 24b4 , c6 = −b32 + 36b2b4 − 216b6 .

(3)

Then we have the following definition:

Definition 6. Let E be an elliptic curve with a Weierstrass equation (1). The
discriminant of E is ∆E = −b22b8 − 8b34 − 27b26 + 9b2b4b6. If ∆E = 0 we say that E
is singular. Otherwise, we define the absolute invariant, or j-invariant, of E to be
j(E) = jE = c34/∆E .

In the context of the SEA algorithm, we are particularly interested in fields of
characteristic greater than 3. Note that by definition we have

c34 = b62 − 72b42b4 + 1728b22b
2
4 − 13824b44 ,

c26 = b62 − 72b42b4 + 1296b22b
2
4 + 432b32b6 − 15552b2b4b6 + 46656b26 .

So when the field characteristic is prime to 6 we may divide by 2633 = 1728 and
write

∆E = −b22b8 − 8b34 − 27b26 + 9b2b4b6 =
c34 − c26
1728

.

The definition of the j-invariant leads us to the closely related notion of elliptic
curve isomorphism. We shall call two curves isomorphic (over a certain field) if there
is an admissible change of variables from one curve to the other. More specifically,
we have

11

Definition 7. Let L be a field extension K ⊆ L ⊆ K. Two elliptic curves
E1/K (with variables x1 and y1) and E2/K (with variables x2 and y2) are said
to be isomorphic elliptic curves over L (or L-isomorphic) if there exists an element
(r, s, t, u) ∈ L3 × L∗, such that the change of variable maps

x1 7→ u2x2 + r , y1 7→ u3y2 + u2sx2 + t , O1 7→ O2

transform E1/K to E2/K. Such transformations are called admissible change of
variables, or L-isomorphisms. By convention, we take the transformation O1 7→ O2

for granted and do not mention it explicitly.

Note that these transformations are invertible with the inverse transformations
being

x2 7→
(
u−1

)2
x1 +

[
−
(
u−1

)2
r
]

and

y2 7→
(
u−1

)3
y1 +

(
u−1

)2 [
u−1s

]
x1 +

[(
u−1

)3 (sr − t)
]
.

Thus, we have shown that isomorphism of curves is a symmetric relation. Further-
more, it is also a transitive relation: suppose we have (r1, s1, t1, u1), (r2, s2, t2, u2) ∈
K3 ×K∗, such that the change of variable maps

xi 7→ u2
ixi+1 + r and yi 7→ u3

i yi+1 + u2
i sixi+1 + ti

transform Ei/K to Ei+1/K, i = 1, 2. Then

x1 = (u1u2)
2 x3 +

[
u2

1r2 + r1
]

and

y1 = (u1u2)
3 y3 + (u1u2)

2 [u1s2 + s1]x3 +
[
u3

1t2 + u2
1s1r2 + t1

]
transform E1/K to E3/K. Since reflexivity is trivial, we have established that
isomorphism of curves is an equivalence relation.

Before we continue with more results regarding elliptic curve isomorphism, we
find the next detour beneficial. Recall the Weierstrass equation

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 . (1)

It is desirable to transform this equation to a simpler form. This is admissible using
elliptic curve isomorphisms, as defined in Definition 7. The final form, however,
depends on the characteristic of the underlying field K. The following lemma deals
with the case of char(K) = p > 3. There exist similar statements for the cases p = 2
and p = 3, but since the SEA algorithm is mostly used over large prime fields, the
following suffices to our purpose.

Lemma 1. Let K be a finite field with charK = p > 3, and let E/K be an elliptic
curve with a Weierstrass equation given in (1). There exists an K-isomorphic curve
E′/K (in variables x′ and y′) to E with the following short Weierstrass equation

E′ : (y′)2 = (x′)3 + ã4x
′ + ã6 ,

where the coefficients ã4 and ã6 are in K.

12

Proof. Consider the following transformation:

x 7→ x′ −
(
a2

1 + 4a2

12

)
, y 7→ y′ −

(a1

2

)
x′ +

(
a3

1 + 4a1a2 − 12a3

24

)
.

Then the Weierstrass equation of E′ becomes

(y′)2 = (x′)3 −
(
a4

1 + 8a2
1a2 − 24a1a3 + 16a2

2 − 48a4

48

)
x′ +

(
a6

1 + 12a4
1a2 − 36a3

1a3

864

)
+
(

48a2
1a

2
2 − 72a2

1a4 − 144a1a2a3 + 64a3
2 − 288a2a4 + 216a2

3 + 864a6

864

)
,

as needed.

For simplicity, we shall immediately change notation and write the short Weier-
strass equation as

E : y2 = x3 + a4x+ a6 . (4)

Through the remainder of this paper, we will only treat elliptic curves in their
short Weierstrass equation form. This form allows much simpler expressions for the
discriminant, j-invariant, and group law associated with an elliptic curve. We start
by writing the constants in Equation (3) in terms of the coefficients of the short
Weierstrass equation:

b2 = 0 , b4 = 2a4 , b6 = 4a6 , b8 = −a2
4 ,

c4 = −48a4 , c6 = −864a6 .

Consequently, the discriminant of E is ∆E = −64a3
4 − 432a2

6 and the j-invariant of
E is

jE = 1728
(

4a3
4

4a3
4 + 27a2

6

)
. (5)

The group law of an elliptic curve given by a short Weierstrass equation becomes

−P1 = (x1,−y1) ,

P1 ⊕ P2 = (x3, y3) =
(
λ2 − x1 − x2, λ(x1 − x3)− y1

)
,where

λ =


y1 − y2

x1 − x2
if P1 6= ±P2 ,

3x2
1 + a4

2y1
if P1 = P2 .

(6)

In addition, the only admissible changes of variables that preserve the short Weier-
strass form are

x1 7→ u2x2 and y1 7→ u3y2

13

for some u ∈ K∗.
We continue our discussion with more results related to elliptic curve isomor-

phism. The following important proposition shows that j-invariants of curves E/K
classify the isomorphism classes over the algebraic closure K.

Proposition 1. Let E/K and E′/K be two elliptic curves. If E and E′ are iso-
morphic over K then they have the same j-invariant. Conversely, if E and E′ have
the same j-invariants then the two curves are isomorphic over K.

Proof. We shall prove the theorem only for the case char(K) = p > 3, which is the
only case where the SEA algorithm is applied in practice. Let E/K be an elliptic
curve given by the short Weierstrass equation

E/K : y2
1 = x3

1 + a4x1 + a6 .

Suppose that there exists a K-isomorphism given by x1 7→ u2x2 and y1 7→ u3y2,
where u ∈ K∗, from E/K to an isomorphic elliptic curve

Ẽ/K : y2
2 = x3

2 + ã4x2 + ã6 .

Then one sees that ã4 = a4/(u4) and ã6 = a6/(u6). Consequently, we have c̃4 =
c4/(u4) and c̃6 = c6/(u6). It follows that ∆Ẽ = ∆E/(u12), so that the two curves
have the same j-invariant, as needed.

Conversely, suppose the curve E/K and Ẽ/K have the same j-invariant. That
is, we have

1728
(

4a3
4

4a3
4 + 27a2

6

)
= 1728

(
4ã4

3

4ã4
3 + 27ã6

2

)
.

Therefore, a3
4ã6

2 = ã4
3a2

6. We consider three cases:

1. a4 = 0. Then since ∆E 6= 0 we must have a6 6= 0. It follows that ã4 = 0 and
ã6 6= 0. Let u = (a6/ã6)1/6 and note that the admissible change of variables
x1 7→ u3x2 and y1 7→ u2y2 takes E to Ẽ.

2. a6 = 0. Then similar to before we have a4 6= 0, ã6 = 0 and ã4 6= 0. Let
u = (a4/ã4)1/4 and again the admissible change of variables x1 7→ u3x2 and
y1 7→ u2y2 takes E to Ẽ.

3. a4a6 6= 0. Then, also using ∆Ẽ 6= 0, we must have ã4ã6 6= 0. Let u =
(a4/ã4)1/4 = (a6/ã6)1/6, so the admissible change of variables x1 7→ u3x2 and
y1 7→ u2y2 takes E to Ẽ.

This concludes the proof.

14

In the context of ECC, the above definition of isomorphism over K of curves
would have been of little significance if this isomorphism did not respect the group
operation on the K-rational points. The following proposition establishes that if
E/K and E′/K are isomorphic curves, then E(K) and E′(K) are indeed homomor-
phic as groups.

Proposition 2. Let E/K and E′/K be K-isomorphic curves. Then the groups of
K-rational points E(K) and E′(K) are homomorphic.

Proof. We prove the proposition only for the case char(K) = p > 3. Let

E : y2 = x3 + a4x+ a6 and Ẽ : ỹ2 = x̃3 + ã4x̃+ ã6

be K-isomorphic curves, where the isomorphism θ is given by x 7→ u2x̃ and y 7→ u3ỹ
for some u ∈ K∗. By a slight abuse of notation, we overload θ and let it act on
points on the curve E, as well as expressions involving the variables x and y. Let
P1 = (x1, y1) and P2 = (x2, y2) be two K-rational points of E. We clearly have

θ(−P1) = θ(x1,−y1) = (u2x̃1,−u3ỹ1) = −θ(P1) .

Define λ̃ for Ẽ in analogous way to Equation (6). Then manipulating the expression
for λ̃, we see that θ(λ) = uλ̃, regardless of whether P1 = P2 or not. It follows that

θ(P1 ⊕ P2) = θ
(
λ2 − x1 − x2 , λ

(
2x1 + x2 − λ2

)
− y1

)
=
(
u2
[(
λ̃
)2 − x̃1 − x̃2

]
, u3

[
λ̃
(
2x̃1 + x̃2 −

(
λ̃
)2)− ỹ1

])
= θ(P1)⊕ θ(P2) .

This proves the proposition.

3.2 Isogenies

In Proposition 2 we showed that K-isomorphic curves have homomorphic groups of
K-rational points. However, isomorphism of elliptic curves is a much more restrictive
notion than homomorphism of the respective groups of K-rational points. In this
section we define isogenies and survey some of their properties, not the least of
which is preserving the group structure of the K-rational points. Given the rich
theory in which isogenies arise, we only state basic results in this section and do not
provide proofs. An excellent introduction to isogenies, focusing on elliptic curves, is
Silverman [20]. More information can be found in Cassels’ study [7].

We start with a few definitions.

Definition 8. Let E/K and E′/K be two elliptic curves.

1. A morphism from E to E′ is a rational map with coefficients in K which is
regular at every point of E.

15

2. An isogeny from E to E′ is a morphism ψ : E → E′ that is (i) a nonconstant
morphism mapping OE to OE′ , or (ii) the zero-morphism P 7→ OE′ for all
P ∈ E. Two elliptic curves E/K and E′/K are said to be isogenous if such
an isogeny ψ : E → E′ exists. The degree of an isogeny ψ is the cardinality of
its kernel.

3. An isogeny ψ from E to itself is called an endomorphism of E. The set of all
endomorphism of E is denoted by EndK(E), or simply End(E) when the field
is understood from the context.

In fact, the notion of an isogeny is not new to us; curve isomorphisms are the
simplest type of isogenies between curves, and the scalar multiplication maps we saw
in Definition 3 are isogenies from a curve to itself. However, the theory of general
isogenies is deeper, owing much of its beauty to the following observation: if ψ is an
isogeny of curves from E1/K to E2/K, then it induces an injection of function fields
ψ∗ : K(E2) ↪→ K(E1). The degree of ψ—as well as the definition of whether ψ is
separable, inseparable, or purely inseparable—are determined by the field extension
K(E1)/ψ∗K(E2). This observation leads to the following important theorem:

Theorem 1. Let E/K and E′/K be isogenous elliptic curves over K under the
isogeny ψ. Then ψ is a group homomorphism from E(K) to E′(K).

Proof. See [20, pages 75–76].

Like curve isomorphism, curve isogeny is also an equivalence relation. We don’t
provide the details here, but only state that the symmetric property is given by the
so-called dual isogeny. This and other basic properties of isogenies are given in the
next proposition.

Proposition 3. Let ψ : E1/K → E2/K be a non-constant isogeny of degree m.

1. For every P ∈ E2, we have |ψ−1(P)| = degs ψ, where degs ψ is the separable
degree of ψ.

2. There is a unique dual isogeny ψ̂ : E2/K → E1/K such that ψ̂ ◦ ψ = [m] on
E1 and ψ◦ ψ̂ = [m] on E2. Here, ◦ is the composition of morphisms operation.
We extend this to the case that ψ is the constant (zero) isogeny by taking ψ̂ to
also be the constant isogeny.

3. degψ = deg ψ̂.

Let n be an integer

4. The degree of the endomorphism [n] is n2.

5. Suppose n 6= 0 and n is prime to char(K). Then [n] is a separable endomor-
phism.

16

Proof. See [20, pages 76–77, 83, 86–87].

Another important property that holds in general for all abelian varieties (and
thus also specifically for elliptic curves) is that the number of K-rational points
characterizes the isogeny equivalence classes.

Proposition 4. Let E/K and E′/K be two elliptic curves defined over a finite field.
Then E and E′ are isogenous over K if and only if |E(K)| = |E′(K)|.

Proof. See [7, pages 242–243].

3.3 Frobenius endomorphism

Let E/K be an elliptic curve. We saw that the scalar multiplication maps [n] on E
are endomorphisms. If we endow the set EndK(E) with an addition + defined by
(φ+ψ)(P) = φ(P)⊕ψ(P) for all φ, ψ ∈ EndK(E), then we see that EndK(E) is in
fact a ring. Thus, we have Z ⊆ EndK(E), where the inclusion is of subrings. If the
inclusion is strict, then we say that E has complex multiplication. It turns out that
this is always the case when the underlying field K is finite, as Theorem 2 shows.

Before we state and prove Theorem 2, we need to distinguish between two types
of curves: supersingular and ordinary (or non-supersingular). Recall that the goal
of the SEA algorithm is to determine the number of Fp-rational points |E(Fp)|, where
Fp is prime field with a characteristic p > 3. We define supersingular curves over Fp

to be curves for which |E(Fp)| = p+ 1. Clearly, this definition means that we shall
mainly be concerned with ordinary curves in this paper. It is important to note
that this is not the usual treatment in the literature, where supersingular curves are
defined as those satisfying one of the cases in Proposition 5 and our definition arises
as a property of those curves.

Theorem 2. Let E/Fp be a non-supersingular curve, where Fp is a prime field of
characteristic p > 3. Define

φp : E(Fp)→ {Fp × Fp} ∪ O
(x, y) 7→ (xp, yp)
O 7→ O .

Then φp is an endomorphism and is different from [n] for all integers n.

Proof. Suppose E/Fp is given by the short Weierstrass equation y2 = x3 +a4x+a6.
Then, recalling that a4, a6 ∈ Fp, we have

(yp)2 =
(
y2
)p =

(
x3 + a4x+ a6

)p =
(
x3
)p + ap

4 (xp) + ap
6

= (xp)3 + a4 (xp) + a6 .

Thus, (xp, yp) satisfies the Weierstrass equation of E, so φp is an endomorphism.

17

Suppose toward a contradiction that φp = [n] for some integer n. By definition
of φp, we can immediately dismiss the case n = 0. From Proposition 3(1), degs φp =
|φ−1

p (O)| = |{O}| = 1, so φp is purely inseparable. It can be shown (see [20,
page 30]) that this implies that deg φp = p. But then we immediately see from
Proposition 3(4) that φp 6= [n] for any integer n, as needed.

Definition 9. Let E/Fp be a non-supersingular curve. We call φp in Theorem 2
the Frobenius endomorphism.

The Frobenius endomorphism is critical to the development of Schoof’s algo-
rithm, and we shall revisit it many times throughout this paper. We now turn to a
closer examination of the other endomorphisms of a curve: the scalar multiplication
maps.

3.4 Torsion points

Recall the scalar multiplication maps in Definition 3. We now introduce the kernel,
or torsion group, of scalar multiplications in the following definition.

Definition 10. Let E/K be an elliptic curve and n an integer. The kernel of [n],
denoted E[n] satisfies E[n] = {P ∈ E(K) | [n]P = O}. An element P ∈ E[n] is
called an n-torsion point.

The kernels of scalar multiplications are used extensively in the development of
Schoof’s algorithm. The following proposition shows that these groups are of very
simple forms.

Proposition 5. Let E/Fp be an elliptic curve over a prime field of characteristic
p > 3. Let n an integer. If p is prime to n then

E[n] ∼= Z/nZ× Z/nZ .

Otherwise, if n = pr, then either

E[pr] = {O}, for all r ≥ 1 or E[pr] ∼= Z/prZ, for all r ≥ 1 .

Proof. Suppose first that p is prime to n. From Proposition 3, we know that |E[n]| =
|[n]−1(O)| = degs[n] = deg[n] = n2. Furthermore, for any integer d dividing n we
have |E[d]| = d2. Let n = pe1

1 · · · p
ek
k be the prime factorization of n. Then on the

one hand E[pei
i] does not contain any element of order greater than pei

i . On the
other hand, it must contain an element of order pei

i or else |E[pc
i]| > (pc

i)
2 for some

c < ei. It follows that E[pei
i] ∼= Z/(pei

i)Z × Z/(pei
i)Z. It follows immediately that

E[n] ∼= Z/nZ× Z/nZ.
Now suppose n = pr. Let φp be the Frobenius endomorphism. Then from

Proposition 3, and since we already showed that φp is purely inseparable,

|E[pr]| = degs[p
r] = (degs(φ̂p ◦ φp))r = (degs φ̂p)r .

18

We also know from the same proposition and the proof of Theorem 2 that deg φ̂p =
deg φp = p. It follows that we need to consider two cases: degs φ̂p = 1 and degs φ̂p =
p. In the first case, |E[pr]| = 1 for all r, implying that E[pr] = {O}. In the second
case, |E[pr]| = pr for all r, which clearly means that E[pr] ∼= Z/prZ. This completes
the proof of the proposition.

The standard way of introducing supersingular curves over a prime field of char-
acteristic p is defining them to be those for which the only p-torsion point is the
point of infinity. Since the groups of rational points for these curves have known
cardinalities (i.e., p+ 1), we shall focus our interest on ordinary curves, instead.

A consequence of Proposition 5 is the next corollary, which will be instrumental
in Atkin’s and Elkies’ improvements to Schoof’s algorithm.

Corollary 1. Let E be an elliptic curve over a prime field Fp of characteristic p > 3.
Let l < p a prime. Then E[l] ∼= Fl × Fl, and E[l] has exactly l + 1 cyclic subgroups
Ci of order l, where 1 ≤ i ≤ l + 1.

Proof. The first statement is just Proposition 5, for the case n = l < p a prime.
Therefore, we know that E[l] is generated by two points P1 and P2, and that |〈P1〉| =
|〈P2〉| = l. For i = 3, . . . , l+1 define Pi = [i−2]P1⊕P2, and note that we necessarily
have Pi 6= O.

We claim that the l + 1 cyclic subgroups Ci are precisely the 〈Pi〉 we defined.
First, note that [l]Pi = [i − 2][l]P1 ⊕ [l]P2 = O. Since l is a prime, it follows that
|〈Pi〉| = l. Next, we show that 〈Pi〉 6= 〈Pj〉 for i 6= j. Clearly, this is the case if
i = 1. Let i, j > 1 and suppose Pi = [m]Pj for some m. Then,

[i− 2]P1 ⊕ [−m][j − 2]P1 = [m− 1]Pj ,

and it follows that m = 1 and i = j, to prove that the groups are pairwise different.
Since the groups are all of prime order, they intersect trivially, and a counting
argument shows that we have all of them.

3.5 Detour into complex analysis

The theory of elliptic curves is exceptionally rich over the complex field. In this
section we state a few fundamental complex-analytic results. The theory relies on
the observation that an elliptic curve corresponds uniquely to a lattice in the complex
field (and thus, equivalently, to a torus). A moderately comprehensive development
of the theory can be found in Silverman [20], from which we take a few important
results.

Let Λ = ω1Z + ω2Z, where ω1, ω2 ∈ C are R-linearly independent, be a lattice.
We define the Weierstrass ℘-function corresponding to Λ.

19

Definition 11. Let Λ ⊂ C be a lattice. The Weierstrass ℘-function (relative to Λ)
is defined by the series

℘(z; Λ) =
1
z2

+
∑

ω∈Λ\{0}

1
(z − ω)2

− 1
ω2

. (7)

For simplicity we write ℘(z) in place of ℘(z; Λ) when the lattice has been fixed.

It can be shown (see [20, pages 153–154]) that a Weierstrass ℘-function relative
to Λ = ω1Z + ω2Z is a doubly periodic function with periods ω1 and ω2, which
we call the basis of Λ. Clearly, the choice of a basis in not unique (for instance,
ω′1 = ω1 + ω2 and ω′2 = ω2 will do), and one can choose, as is conventional, ω1 and
ω2 such that τ = ω1/ω2 lies in the upper half-plane H = {z ∈ C | =(z) > 0} of the
complex plane. We call such a basis homogeneous. The following lemma states that
the homogeneous bases are characterized by elements of SL2(Z).

Lemma 2. Let Λ be a lattice with a homogeneous basis Ω = {ω1, ω2}. Then for
any transformation σ ∈ SL2(Z), the action of σ on Ω by a linear fractional trans-
formation yields another homogeneous basis of Λ. Conversely, if Ω1 and Ω2 are two
homogeneous bases of Λ then there exists a transformation σ ∈ SL2(Z) such that the
action of σ on Ω1 results in Ω2.

Proof. See [12, pages 29–30].

The next important theorem establishes a bijection between points on an elliptic
curve over the complex field and points on the complex plain modulo a suitable
lattice Λ.

Theorem 3. Let E/C be an elliptic curve given by a Weierstrass equation (1) over
the complex field. There exists a lattice Λ ⊂ C such that the map

C/Λ→ E

z + Λ 7→

{
(xΛ, (℘′(z)− a1xΛ − a3)/2) , z /∈ Λ ,

O , z ∈ Λ ,

where xΛ = ℘(z) − b2/12, is a bijection. Conversely, given a lattice Λ, there exists
a unique curve E/C such that the map above exists.

Proof. See [20, page 161].

A special case of Theorem 3 is when E : y2 = x3 + a4x+ a6. Then we have

z + Λ 7→ (℘(z), ℘′(z)/2) , z /∈ Λ .

20

In such a case, the coefficients of the short Weierstrass equation are a4 = −g2/ 3
√

4
and a6 = −g3, where

g2 = 60
∑

ω∈Λ\{0}

1
ω4

, g3 = 140
∑

ω∈Λ\{0}

1
ω6

.

Let Λ ⊂ C be a lattice with homogenous basis {ω1, ω2} such that τ = ω1/ω2 ∈
H. Theorem 3 associates to Λ a curve E/C, which we will denote by EΛ. Let
q = e2πiτ ∈ C and define j(q) to be the j-invariant of EΛ. Recall that j-invariants
classify isomorphism classes over C (we showed this in Proposition 1 for the closure
of a finite field K, but the result holds in general). Note that if Λ′ ⊂ C is a lattice
with the homogenous basis {cω1, cω2} for some nonzero c ∈ C, then (cω1)/(cω2) =
ω1/ω2 = τ . Therefore, we would expect the elliptic curves corresponding to Λ and
Λ′ to be isomorphic. The following proposition ensures that this is indeed the case.
It also plays a role in the SEA algorithm when we discuss how to construct a special
polynomial from a kernel of an isogeny.

Proposition 6. Let Λ,Λ′ ⊂ C be two lattices. The elliptic curves corresponding to
Λ and Λ′ are isomorphic if and only if Λ = cΛ′ for some nonzero c ∈ C.

Proof. See [20, page 161].

For any τ ∈ H, we define the following lattice: Λτ = Z+τZ. A direct consequence
of Proposition 6 is that for any lattice Λ ⊂ C we can find a nonzero c ∈ C such that
cΛ = Λτ for some τ ∈ H. In Proposition 7 we will improve this result even further,
but first we would like to motivate the discussion by recalling the j-invariants of
curves.

In the discussion above, we defined j(q) indirectly, in terms of the corresponding
elliptic curve E. It turns out we can define j(q) directly in terms of q. Such a
procedure would be well-defined only if we can show that j(q) is independent of
the choice of τ = ω1/ω2. From Lemma 2 we know that it suffices to show that
for all σ ∈ SL2(Z), we have j(q) = j(qσ) where qσ = e2πiσ{ω1,ω2}. The proposition
below uses this fact to show that we can pick τ in the standard fundamental region
F = {τ ∈ C | =(τ) > 0,−1/2 ≤ <(τ) < 1/2, |τ | ≥ 1}.

Proposition 7. Let Λ ⊂ C be a lattice. Then there exists a nonzero c ∈ C such
that cΛ = Λτ for some τ ∈ F .

Proof. See [20, page 343].

We now show how to define j(q) directly. To that end, let ZJqK be the ring of
formal power series over the integers in the variable q. Define in ZJqK the following

21

series:

E2(q) = 1− 24
∞∑

n=1

nqn

1− qn
, E4(q) = 1 + 240

∞∑
n=1

n3qn

1− qn
,

E6(q) = 1− 504
∞∑

n=1

n5qn

1− qn
.

We define two more formal power series, this time in Z[ζ, 1
ζ(1−ζ)]JqK:

x(ζ; q) =
1
12
− 2

∞∑
n=1

qn

(1− qn)2
+
∑
n∈Z

ζqn

(1− ζqn)2
,

y(ζ; q) =
1
2

∑
n∈Z

ζqn(1 + ζqn)
(1− ζqn)3

.

Then with the above power series, the following proposition can be established:

Proposition 8. The following equalities of power series hold:

y2 = x3 − E4(q)
48

x+
E6(q)
864

, (8)

p1 =
∑

ζ∈µl,ζ 6=1

x(ζ; q) =
1
12
l
(
E2(q)− lE2(ql)

)
, (9)

where x = x(ζ; q), y = y(ζ; q), and µl is the set of complex l-th roots of unity.

Proof. See [19, page 245].

Schoof (in [19] and further examined by others in [6]) notes that E4(q) and E6(q)
are integers in some number field K, with a ring of integers OK . Furthermore, OK

contains a prime ideal B with residue field Fp such that E4(q) and E6(q) modulo B

are elements of Fp.
Let E/C be an elliptic curve with a j-invariant jE /∈ {0, 1728}. In Equation (4)

we introduced the short Weierstrass equation of an elliptic curve over a field of prime
characteristic greater than 3. Later, in Equation (5), we derived the j-invariant of
such a curve. Both of these results also hold for fields of characteristic zero, such
as the complex field. Thus, we can assume E is given by the short Weierstrass
equation (4). Equation (8) establishes that

E4(q) ≡ −48a4 (mod B) and E6(q) ≡ 864a6 (mod B) (10)

Thus, if we substitute the value q associated with an elliptic curve E into the formal
series

j(q) = 1728
(

E4(q)3

E4(q)3 − E6(q)2

)
=

1
q

+ 744 + 196884q + 21493760q2 + · · · , (11)

then the resultant value is the j-invariant jE .

22

3.6 Division polynomials

Through the remainder of this section, let p a prime greater than 3.
Consider an elliptic curve E/Fp over a prime field of characteristic p. We wish

to associate to this curve a set of multivariate polynomials and a related set of
univariate polynomials, both called division polynomials. These polynomials arise
from the complex analytic structure that we explored in the previous section. We
present two important results in this section. The first is that the nontrivial torsion
points are precisely the roots of corresponding division polynomials, as we shall see
in Theorem 4. The second result we discuss in this section is Theorem 5, where we
find that the division polynomials are intimately related to the scalar multiplications
endomorphisms. Both of these results will be used in Schoof’s algorithm.

Definition 12. Let E/Fp be an elliptic curve given by a short Weierstrass equa-
tion (4). Define recursively the m-th division polynomial ψm ∈ Fp[x, y] as

ψ0 = 0 ,
ψ1 = 1 ,
ψ2 = 2y ,

ψ3 = 3x4 + 6a4x
2 + 12a6x− a2

4 ,

ψ4 = 4y
(
x6 + 5a4x

4 + 20a6x
3 − 5a2

4x
2 − 4a4a6x− 8a2

6 − a3
4

)
,

ψ2m+1 = ψm+2ψ
3
m − ψm−1ψ

3
m+1 , m ≥ 2 ,

ψ2m =

(
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

)
ψm

2y
, m > 2 .

where for simplicity we suppress the arguments of ψm.

First, we claim that the numerator of ψ2m, where m > 2, is divisible by 4y2.
Thus, in particular the numerator is divisible by the denominator 2y, so the defini-
tion of ψ2m makes sense. We have

ψ6 =
(ψ5ψ

2
2 − ψ1ψ

2
4)ψ3

4y2

=
4y2

(
ψ5 − 4

(
x6 + 5a4x

4 + 20a6x
3 − 5a2

4x
2 − 4a4a6x− 8a2

6 − a3
4

)2)
ψ3

4y2
,

so the claim holds in this case. If m is even, then so are m+2 and m−2. Otherwise,
m is odd, so both m− 1 and m+ 1 are even. It follows by induction that regardless
of whether m is even or odd, the numerator of ψ2m is divisible by 4y2, and the claim
follows.

The evaluation of ψm is always taken at points on the curve. Therefore, we
may write the division polynomials modulo the Weierstrass equation of the elliptic
curve. In particular, it follows that the degree of ψm in y is never greater than one.

23

Furthermore, we already know that ψ2m is divisible by 2y. This observation gives
rise to the first statement in the following important theorem, which ties the m-th
division polynomial with the subgroup of m-torsion points E[m].

Theorem 4. Let m be a nonnegative integer. Define a polynomial fm in the poly-
nomial ring Fp[x, y] as follows:

fm(x, y) =

{
ψm(x, y) m odd,
ψm(x, y)/2y m even.

1. fm depends only on x.

2. The degree of fm in x is at most (m2−1)/2 if m is odd, and at most (m2−4)/2
if m is even. The degrees are exact if p does not divide m for an odd m, or
m/2 for an even m.

3. Let P 6= O be a point on the elliptic curve E/Fp such that [2]P 6= O, and let
m ≥ 1. Then P = (x, y) ∈ E[m] if and only if fm(x) = 0.

4. If m is an odd prime not equal to p, then fm has no other root in any extension
of Fl.

Proof. We already know that ψ2m is divisible by 2y, so that the definition of fm

makes sense. We now prove that fm depends only on x by induction. This clearly
holds for 0 ≤ m ≤ 4. We have f2k+1 = ψ2k+1 = ψk+2ψ

3
k −ψk−1ψ

3
k+1. It follows that

f2k+1 =

{
fk+2f

3
k − 16(x3 + a4x+ a6)2fk−1f

3
k+1 k is odd,

16(x3 + a4x+ a6)2fk+2f
3
k − fk−1f

3
k+1 k is even.

In addition,

f2k =
ψ2k

2y
=

(ψk+2ψ
2
k−1 − ψk−2ψ

2
k+1)ψk

4y2
= (fk+2f

2
k−1 − fk−2f

2
k+1)fk ,

regardless of whether k is odd or even. By induction, fm depends only on x, to
prove the first statement. By abuse of notation, we will consider fm as a univariate
polynomial in the ring Fp[x].

The second and third statements follow from the way the division polynomials
are introduced in the context of a complex plane modulo a suitable lattice. See Lang
[11, pages 33–34] for more details.

If m a prime not equal to p, then by Proposition 5 there are m2 − 1 nontrivial
m-torsion points. If we further assume that m is odd, then there are (m2 − 1)/2
different x-coordinates of the nontrivial m-torsion points. Furthermore, from the
second statement, the degree of fm is also (m2 − 1)/2. The last statement of the
theorem follows immediately.

24

We now proceed to proving the second important result of this section. We
show that the scalar multiplication endomorphisms can be expressed in terms of the
division polynomials.

Theorem 5. Let E/Fp be an elliptic curve. Let m be a positive integer and P =
(x, y) ∈ E(Fp) a point with [m]P 6= O. Then

[m]P =
(
x− ψm−1ψm+1

ψ2
m

,
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

4yψ3
m

)
. (12)

Proof. We assume the curve is given by the short Weierstrass equation (4). There
are two observations to be made here. The first is that under the equivalence we
showed in Section 3.5 between curves and lattices in the complex plain, if z ∈ C \Λ
corresponds to a point (℘(z), ℘′(z)/2) on the curve of order not dividing m, then mz
corresponds to a point [m](℘(z), ℘′(z)/2) = (℘(mz), ℘′(mz)/2). This result holds
whenever E is considered over a field of characteristic not equal to 2 or 3. With
some squinting, this result seems plausible, and we refer the reader to Lang’s [11]
treatment for the necessary details.

The second observation, proven in [11, pages 34–36], is that for u, v ∈ C with
u− v 6≡ 0 (mod Λ) we have

℘(mz) = ℘(z)− ψm−1ψm+1

ψ2
m

and ℘(u+ v)− ℘(u− v) = − ℘′(u)℘′(v)
(℘(u)− ℘(v))2

.

Substituting u = mz and v = z (which is legal when P is not an m-torsion point)
and rearranging, we find

℘(z)℘′(mz) = −
(
℘
(
(m+ 1)z

)
− ℘

(
(m− 1)z

))(
℘(mz)− ℘(z)

)2
=
(
ψmψm+2

ψ2
m+1

− ψm−2ψm

ψ2
m−1

)(
ψm−1ψm+1

ψ2
m

)2

=
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

ψ3
m

.

From here the proof is immediate. If P = (x, y) = (℘(z), ℘′(z)/2) is a point such
that [m]P 6= O, then

[m]P = (℘(mz), ℘′(mz)/2) =
(
x− ψm−1ψm+1

ψ2
m

,
ψm+2ψ

2
m−1 − ψm−2ψ

2
m+1

4yψ3
m

)
,

as needed.

3.7 Modular polynomials

We conclude our survey of the arithmetic of elliptic curves by introducing the mod-
ular polynomials. These polynomials will be used extensively in our description of
the Elkies and Atkin procedures.

25

Recall from the Section 3.5 that we can associate to each elliptic curve E/C an
invariant τ ∈ F , unique up to isomorphism of curves. We also defined q = e2πiτ ∈ C
and found that we can express the j-invariant of E in terms of a formal series j(q).
For simplicity, we change notation in this section from the previous one and define
j(τ) = jE .

For any positive integer n, define

S∗n =
{(

a b
0 d

)∣∣∣∣ a, b, d ∈ Z, 0 ≤ b < d, ad = n, gcd(a, b, d) = 1
}
.

For α =
(

a b
0 d

)
∈ S∗n, we define the map

j ◦ α(τ) = j

(
aτ + b

d

)
.

Then, we can define the modular polynomials as follows:

Definition 13. Let n be a positive integer. Then the n-th modular polynomial is
given by the equation

Φn(x, j) =
∏

α∈S∗
n

(x− j ◦ α) .

The following lemma derives the relation between modular polynomials and
isogenous elliptic curves over C.

Lemma 3. Let E1/C and E2/C be two elliptic curves with j-invariants jE1 and
jE2, respectively. Then Φn(jE1 , jE2) = 0 if and only if there is an isogeny from E1

to E2 whose kernel is cyclic of degree n.

Proof. This is adopted from an exercise in [21, page 182].

The next theorem establishes an analogous statement for curves over finite fields.
Its result is instrumental in Atkin’s classification of primes. We shall also encounter
this theorem in the context of constructing factors of divisional polynomials.

Theorem 6. Let l be a prime, Fp be a finite field with p 6= l, and E an elliptic
curve over Fp. Then the l + 1 zeros ̃ ∈ Fp of the polynomial Φl(x, j(E)) = 0 are
precisely the j-invariants of the isogenous curves Ẽ = E/C with C one of the l + 1
cyclic subgroups of E[l].

Proof. See [17, pages 44–46].

As has become customary with introductory texts to elliptic curve cryptography,
we provide the modular polynomials for l = 3 and l = 5. The following are taken

26

from [6] and the excellent sage code [22].

Φ3(x, y) = x4 − x3y3 + y4

+ 2232(x3y2 + x2y3)

− 1069956(x3y + xy3)

+ 36864000(x3 + y3)

+ 2587918086x2y2

+ 8900222976000(x2y + xy2)

+ 452984832000000(x2 + y2)
− 770845966336000000xy
+ 1855425871872000000000(x+ y) ,

and

Φ5(x, y) = x6 − x5y5 + y6

+ 3720(x5y4 + x4y5)

− 4550940(x5y3 + x3y5)

+ 2028551200(x5y2 + x2y5)

− 246683410950(x5y + xy5)

+ 1963211489280(x5 + y5)

+ 1665999364600x4y4

+ 107878928185336800(x4y3 + x3y4)

+ 383083609779811215375(x4y2 + x2y4)

+ 128541798906828816384000(x4y + xy4)

+ 1284733132841424456253440(x4 + y4)

− 441206965512914835246100x3y3

+ 26898488858380731577417728000(x3y2 + x2y3)

− 192457934618928299655108231168000(x3y + xy3)

+ 280244777828439527804321565297868800(x3 + y3)

+ 5110941777552418083110765199360000x2y2

+ 36554736583949629295706472332656640000(x2y + xy2)

+ 6692500042627997708487149415015068467200(x2 + y2)
− 264073457076620596259715790247978782949376xy
+ 53274330803424425450420160273356509151232000(x+ y)
+ 141359947154721358697753474691071362751004672000 .

27

As is evident from these examples, the coefficient of the modular polynomials
increase rapidly. Luckily, there exist other polynomials that satisfy similar properties
as in Theorem 6. We will allude to this fact when we discuss the SEA algorithm.

28

4 SEA Algorithm

Throughout this section we assume that E is an elliptic curve of a prime field Fp of
characteristic p > 3.

In Section 2.3 we showed that the security of an elliptic curve cryptosystem
depends on the order of the group of rational points E(Fp). Therefore, it is of
great interest to be able to determine the order of E(Fp) in an efficient manner. As
discussed in [6], there are methods of constructing elliptic curves E/Fp for which
the order of the group E(Fp) is easily determined. However, these methods impose
additional structure on the curve. Thus, non-generic algorithms may leverage this
additional structure in solving the DLP in this curves.

The Schoof-Elkies-Atkin (SEA) algorithm, however, does not assume any struc-
tural properties of the underlying elliptic curve, as long as it is an ordinary curve.
Coupled with its efficient implementation over fields of large prime characteristic,
the algorithm is the preferred method of determining the order of the group of
rational points of an arbitrary elliptic curve [13].

In the following sections, we first present an important result by Hasse (which
was later generalized by Weil) tying the order of E(Fp) to the one of Fp. Next, we
explain in some detail the original Schoof algorithm, in which we consider the trace of
the Frobenius endomorphism (to be explained later) modulo different primes. This
algorithm, while of polynomial complexity in the logarithm of the field characteristic,
is still very slow in practice. We then turn our attention to Atkin’s and Elkies’
improvements to the algorithm, which resulted in a very practical running time. The
first result, due to Atkin, is the classification of different primes into two groups:
Atkin primes and Elkies primes. In the case of Atkin primes, further analysis of
the Frobenius endomorphism as an element of PGL2(Fl) would prove useful. In the
case of Elkies primes, we will be able to invoke complex analytic results to help us
compute the group order.

4.1 Schoof’s algorithm

Consider an elliptic curve E over Fp. The following theorem, proven by Hasse,
states that the number of Fp-rational points of E is roughly equal to the number
of elements in the field Fp plus one. There is an intuitive reasoning explaining this
result: each of the p possible values of x gives rise to two values of y if x3 +a4x+a6

is a square, and no value of y if it is not a square. Assuming that the distribution
of the possible x3 + a4x + a6 values is nearly “uniform,” we would expect half of
these values to be squares. We add to this number the point of infinity, which is by
definition rational, to arrive at the expected number of p+ 1 rational points.

Theorem 7 (Hasse). Let E be an elliptic curve defined over Fp. Then

|E(Fp)| = p+ 1− t , (13)

where |t| ≤ 2
√
p.

29

Proof. See [20, page 131].

The error term t is intimately related to the Frobenius endomorphism described
in Theorem 2. The missing link is the characteristic polynomial which we define
next.

Definition 14. Let φp be the Frobenius endomorphism as in Theorem 2. We call
the polynomial

χ(T) = T 2 + tT + p

the characteristic polynomial of the Frobenius endomorphism, where t is the error
term, also called the trace of the Frobenius endomorphism, as in Theorem 7.

The relation between the Frobenius endomorphism and Hasse’s Theorem is thus
realized in the following theorem.

Theorem 8. The Frobenius endomorphism φp satisfies

χ(φp) = φ2
p − [t]φp + [p] = [0] , (14)

where t is the trace of the Frobenius endomorphism and [n] is the scalar multiplica-
tion by n.

Proof. See [20, pages 135–136].

Hasse’s theorem assures us that the trace of the Frobenius endomorphism t sat-
isfies |t| ≤ 2

√
p. Furthermore, it asserts that if we can find t then we can determine

the number of Fp-rational points of E/Fp. Therefore, it suffices to find t modulo
some integer greater than 4

√
p. Schoof’s approach to the problem of finding the

trace t was to determine t modulo primes l1, . . . , lr satisfying
∏r

i=1 li > 4
√
p. Then,

using the Chinese remainder theorem, one could easily find t.
To determine t modulo a small prime l, we first consider the case l = 2. Since p is

an odd prime, we know from Hasse’s theorem that |E(Fp)| = p+ 1− t ≡ t (mod 2).
Clearly, O ∈ E(Fp), and if P = (x, y) ∈ E(Fp) then −P = (x,−y) ∈ E(Fp). Thus,
if E has no nontrivial points of order 2, then we have found that t ≡ 1 (mod 2).
Otherwise, E may have either one or three points of order 2, in which case t ≡ 0
(mod 2).

Note that determining that a curve E : y2 = x3 +a4x+a6 has a nontrivial point
of order 2 is equivalent to determining that x3 + a4x+ a6 is reducible in Fp, which
is in turn equivalent to finding nontrivial factor of x3 + a4x+ a6 and xp − x.

Now consider the case l is an odd prime. Recall from Theorem 8 that the
Frobenius endomorphism φp satisfies Equation (14). We restrict the characteristic
polynomial of φp to the group of l-torsion points E[l] to yield the equation

φ2
p − [tl]φp + [pl] = [0]

30

in End(E), where tl ≡ t (mod l), pl ≡ p (mod l) and 0 ≤ tl, ql < l. Thus, the
problem of finding tl amounts to finding an integer 0 ≤ τ < l such that

φ2
p(P)⊕ [pl]P = [τ]φp(P) (15)

for all nontrivial l-torsion points P ∈ E[l] \ {O}. Note that τ is unique: if τ1 and
τ2, with 0 ≤ τ1, τ2 < l, both satisfy (15), then we have [τ1]φp(P) = [τ2]φp(P).
Equivalently, [τd]φp(P) = [0], where τd = |τ1 − τ2| for all nontrivial l-torsion points
P . Since P 6= O, also φp(P) 6= O and it follows that τd | l. But then, since l is a
prime and 0 ≤ τ1, τ2 < l, we must have τ1 = τ2, to establish uniqueness.

The heart of Schoof’s algorithm lies in the fact that we need not compute the
coordinates of the points φ2

p(P) = (xp2
, yp2

) and φp(P) = (xp, yp). Computing these
coordinates would indeed be very expensive. However, in Theorem 4 we showed
that the nontrivial l-torsion points are precisely the roots of the l-th division poly-
nomial fl. Furthermore, to compute [pl](x, y) and [τ](xp, yp) we may also use the
polynomials fl, as shown in Theorem 5. Thus, our computations can be carried out
in the polynomial ring Fp[x, y]/(fl(x), E(x, y)), where E(x, y) = y2 − x3 − a4x− a6

is the short Weierstrass equation (4).
We explain the algorithm in more detail, following the original introduction of

the algorithm by Schoof in [18] and further discussion by Blake, Seroussi, and Smart
in [6]. Let l be an odd prime, and let P = (x, y) be a nontrivial l-torsion point, where
we treat the coordinates as indeterminate. Our first main goal is to compute and
compare the x-coordinates of (xp2

, yp2
)⊕ [pl](x, y) and [τ](xp, yp) for 0 ≤ τ < l. In

fact, since the x-coordinates of [τ](xp, yp) and its inverse [l− τ](xp, yp) are identical,
it suffices to check 0 ≤ τ ≤ (l − 1)/2.

We distinguish between two cases. In the first case, φ2
p(Q) 6= ±[pl]Q for all

nontrivial l-torsion points Q. In particular, this means that tl 6= 0, and that φ2
p(Q)

and ±[pl]Q have different x-coordinates. In the second case, there exists a nontrivial
l-torsion point P = (x, y) for which φ2

p(P) = [pl]P or φ2
p(P) = −[pl]P . Note that in

this case the x-coordinates of φ2
p(P) and ±[pl]P are the same. That is, we have

xp2
= x− ψpl−1ψpl+1

ψ2
pl

.

Using the results of Theorem 4, we see that such a point P exists if and only if we
have gcd(ψ2

pl
(xp2 − x) + ψpl−1ψpl+1, ψl) 6= 1, so there is a simple test to separate

the cases. In practice, we shall transform the expressions above and compute the
greatest common divisor with the univariate division polynomials fi.

Case 1: Here, φ2
p(Q) 6= ±[pl]Q for all nontrivial l-torsion points Q. Using

Equations (6) and (12), we have(
xp2

, yp2)⊕ [pl](x, y)

=
(
λ2 − xp2 − x+

ψpl−1ψpl+1

ψ2
pl

, λ
(
2xp2 − λ2 + x− ψpl−1ψpl+1

ψ2
pl

)
− yp2

)
,

31

where

λ =
4yp2+1ψ3

pl
− ψpl+2ψ

2
pl−1 + ψpl−2ψ

2
pl+1

4yψpl

(
ψ2

pl
(xp2 − x) + ψpl−1ψpl+1

) .

If pl = 1, then ψpl−2 is not defined. However, in this case we need to compute
(xp2

, yp2
)⊕ (x, y), which is easy.

Thus, after finding a common denominator, we can write the x-coordinate of
(xp2

, yp2
)⊕ [pl](x, y) as h1/h2 for some h1, h2 ∈ Fl[x, y]. The x-coordinate of [τ](x, y)

is written similarly as h3/h4 for some h3, h4 ∈ Fl[x, y]. We will be computing [τ](x, y)
for potentially many values of τ , so it may be preferred to write this expression
leaving τ indeterminate.

Of course, the whole point of the algorithm is that we can make the computa-
tions considerably easier by reducing modulo the curve equation and the division
polynomial fl. Thus, we can and will reduce all powers of y greater than one and
all powers of x greater than the degree of fl, which is of the order O(l2). We equate
the two resultant expressions, and by clearing denominators we obtain an expression
of the form a(x) − yb(x) = 0 for a, b ∈ Fl[x]. Substituting into the curve equation
yields an expression hX(x) = 0 for hX ∈ Fl[x].

We need to determine if there exists one (and thus all) nontrivial l-torsion point
P = (x, y) for which hX(x) = 0. As indicated in Theorem 4, a necessary and
sufficient condition for the existence of such a point is that x is a root of fl. Hence,
if gcd(hX , fl) = 1 then such a point does not exist and another value of τ should be
tried. Otherwise, a nontrivial l-torsion point P satisfying Equation (15) exists for
either τ or l− τ , and it remains to find which of the two holds. This can be done by
similarly computing and comparing the y-coordinates of (xp2

, yp2
) ⊕ [pl](x, y) and

[τ](xp, yp). If the two are equal, then we take tl = τ . Otherwise, we take tl = l− τ .
Note that if in the computation of [τ](x, y) we have not left τ as indeterminate,
then we in fact have hX ≡ 0 (mod fl) whenever nontrivial l-torsion points satisfy
Equation (15) with tl = ±τ .

Case 2: Here, there exists a nontrivial l-torsion point P for which φ2
p(P) =

±[pl]P . Note that if φ2
p(P) = [pl]P then we must have [2pl]P = [tl]φp(P). Equiv-

alently, φp(P) = [2pl
tl

]P . We apply the Frobenius endomorphism on both sides to
find

[pl]P = φ2
p(P) = φp

([2pl

tl

]
P

)
=
[4p2

l

t2l

]
P .

Therefore, in this case t2 ≡ 4pl (mod l) and thus pl is a square in Fl, say with
pl ≡ ω2 (mod l) for some ω ∈ Fl. Note that in this case either ω or −ω is an
eigenvalue of the Frobenius endomorphism: φp(P) = [ω]P or φp(P) = [−ω]P .

This suggests the following treatment of Case 2. First we check if
(pl

l

)
= −1. If

this is the case, then φ2
p(P) = −[pl]P and we conclude that tl = 0. Otherwise, we

32

can find a square root ω of pl in Fl. Next we check whether ω or −ω is an eigenvalue
of the Frobenius endomorphism. This test is similar to the test which separated
Case 1 and Case 2 above: if gcd(ψ2

ω(xp − x) + ψω−1ψω+1, ψl) = 1, then neither ω
nor −ω is an eigenvalue and again we have tl = 0. Otherwise, we need to check the
y-coordinates. The y-coordinate of [ω](x, y) is

ψω+2ψ
2
ω−1 − ψω−2ψ

2
ω+1

4yψ3
ω

,

so if gcd(4yp+1ψ3
ω − ψω+2ψ

2
ω−1 + ψω−2ψ

2
ω+1, ωl) = 1, then −ω is eigenvalue and

t ≡ −2ω (mod l). Otherwise, ω is an eigenvalue and t ≡ 2ω (mod l).
We illustrate this method with the following example. The curve and underlying

field in the example were chosen to make computations easy. Clearly, such a curve
would make an extremely poor choice for a cryptosystem. However, it is illustrative,
and we shall make use of this curve later as well, when we discuss Elkies and Atkin
primes.

Example 1. Let E1 : y2 = x3 +x+2 be an elliptic curve, taken over F17. It is easy
to compute by hand that

E1(F17) = {O, (0,±6), (1,±2), (3,±7), (4,±6), (5,±8), (9,±3),
(10,±3), (11,±1), (12,±5), (13,±6), (15,±3), (16, 0)} ,

so |E1(F17)| = 24. We would like to verify this using Schoof’s algorithm. We need
to determine the trace modulo 4

√
17 ∼ 16.5, so it suffices to consider the primes 2,

3, and 5.
Consider first the case l = 2. We know that t2 = 0 if and only if E1 has a

nontrivial point of order 2. Since x3 +x+2 = (x+1)(x2−x+2) is reducible in F17,
we conclude that there exists a nontrivial point of order 2, namely (−1, 0) = (16, 0),
and t2 = 0.

Now consider the case l = 3, so that p3 = 17 ≡ 2 (mod 3). Let P = (x, y) be
a nontrivial 3-torsion point with indeterminate coordinates. First, we compute the
coordinates of φ17(P) and φ2

17(P) in F17[x, y]/(f3(x), E1(x, y)):

x17 = −8x3 − 2x2 − 6x+ 1, x172
= x,

y17 = y
(
4x3 − 8x2 − 8x− 2

)
, y172

= y.

So in evaluating the test that separates Case 1 from Case 2 we see that

gcd
(
ψ2

2

(
x172 − x

)
+ ψ1ψ3, ψ3

)
= gcd(ψ3, ψ3) = ψ3 6= 1 .

Since also p3 is not a square in F3, we mush have t3 = 0. Of course, in this case,
even without computing the gcd, we can immediately see that φ2

17(P) = P = −[2]P ,
so φ2

17(P)⊕ [2]P = O and t3 = 0. It is important to note that in general, for large

33

primes p, the reductions of xp, yp, xp2
, and yp2

would require a very significant
computational effort.

Lastly, we consider the case l = 5. Computations here are more involved than in
the previous case. To help the reader follow the algorithm, we omit many non-trivial
computations. As a compensation, we provide some relevant sage source code to
the reader in Figure 6 in the appendix.

We have p5 = 17 ≡ 2 (mod 5). Similar to before, let P = (x, y) be a nontrivial
5-torsion point with indeterminate coordinates. Note that after reducing by the
curve equation E1(x, y), the univariate 5th division polynomial evaluates to

f5(x) = 5x12 − 6x10 − 5x9 − 3x8 + 4x7 − 2x6 + 2x5 − 2x4 − 6x3 − 7x2 + x− 7 .

Again, we find the coordinates of φ17(P) and φ2
17(P) in F17[x, y]/(f5(x), E1(x, y)):

x17 = −4x11 − 7x10 + x9 − 2x8 + 7x7 + 5x6 + 5x5 − 5x4 + 5x2 − x+ 7,

x172
= −4x11 + 6x10 + 7x9 − 3x8 − 7x7 + x6 − 4x5 − 6x4 + 8x3 + x2 + 6,

y17 = y
(
3x11 + 6x10 + 6x9 − 6x8 − 3x7 − 7x6 + 5x5 − 6x4 + 2x3 + 6x2 + 2x+ 4

)
,

y172
= y

(
x11 + 5x10 + 6x9 + 4x8 + 3x7 − 7x6 + 7x5 − 5x4 − 3x3 + 2x2 + 5x+ 7

)
.

Next, we evaluate and find

gcd
(
ψ2

2

(
x172 − x

)
+ ψ1ψ3, ψ5

)
= 1 ,

so we know that Case 1 applies. Hence, we need only consider 0 < τ ≤ (5−1)/2 = 2.
Using Equation (12), we find that

[p5]P = [2]P =
(
x− ψ1ψ3

ψ2
2

,
ψ4ψ

2
1 − ψ0ψ

2
3

4yψ3
2

)
=
(
x− 3x4 + 6x2 + 24x− 1

4y2
,
x6 + 5x4 + 40x3 − 5x2 − 8x− 33

8y3

)
,

For simplicity define φ2
17(P) = (x3, y3), [2]P = (x4, y4), and (x3, y3) ⊕ (x4, y4) =

(x5, y5). From Equation (6) we know that x5 = λ2 − x3 − x4, where λ = (y3 −
y4)/(x3 − x4). In F17[x, y]/(f5(x), E1(x, y)), this resolves to

λ = y
(
−8x11 − 3x10 − 3x9 − 3x8 − 2x7 − 5x6 + x5 − 2x4 − 7x3 − 8x2 + 4x+ 6

)
.

Since there are only two values of τ to check, we choose to set τ = 1 and explicitly
compute the x-coordinate equality x5 = τx17. After clearing denominators, we find
that in F17[x, y]/(f5(x), E1(x, y)) the resultant expression is h(x) ≡ 0. Therefore,
we can conclude that t5 = ±1, and it remains to see which of the two options holds.
We compute

y5 = y
(
−3x11 − 6x10 − 6x9 + 6x8 + 3x7 + 7x6 − 5x5 + 6x4 − 2x3 − 6x2 − 2x− 4

)
,

34

so we see immediately that y5 = −y17. We conclude that t5 = −1.
Next we combine the above information. We have found that t2 = t3 = 0 and

t5 = 4. Therefore, we can uniquely determine that t ≡ 24 (mod 30). On the other
hand, we know from Theorem 7 that |t| ≤ 2 ·

√
17 < 9. Thus, we must have t = −6.

It follows that |E1(F17)| = 17 + 1− (−6) = 24, as needed. 3

The complexity of Schoof’s algorithm is in the order O(log2+3µ p) bit operations
[13]. Schoof [19] notes that although the algorithm is of polynomial running time in
the logarithm of p, it is extremely slow and impractical. The reason for such a slow
running time is due to the rapid growth in the degree of the division polynomial.
For instance, Schoof [19] finds that if l > 250, then one element in the reduced
polynomial ring will take more than 1.5 megabytes of memory to store.

4.2 Atkin’s classification

As noted above, Schoof’s algorithm is fairly inefficient because of the exponential
growth in the degree of the division polynomial fl. Atkin and Elkies sought to
improve the efficiency of Schoof’s algorithm by first analyzing how the restricted
characteristic polynomial χl(T) = T 2−tlT+pl of the Frobenius endomorphism splits
over Fl. The polynomial χl(T) has a root in Fl if and only if the (still unknown)
discriminant ∆χ = t2−4p ≡ t2l −4pl (mod l) is a square in Fl. Otherwise, the roots
are elements of Fl[

√
∆χ] ∼= Fl2 .

Definition 15. Let ∆χ = t2 − 4p be the discriminant of χ(T), the characteristic
polynomial of the Frobenius endomorphism. If ∆χ is a square in Fl, we say that l
is an Elkies prime. Otherwise, we call l an Atkin prime.

Atkin was able to show how the l-th modular polynomial Φl can be used to
determine whether l is an Elkies prime or an Atkin prime. He then proceeded to
describe how to compute the order of the Frobenius endomorphism φp in PGL2(Fl).
In the case of l an Atkin prime, the order of φp is useful to determine possible values
of the reduced trace tl. In the case of l an Elkies prime, Elkies was able to show
how the division polynomial can be replaced by a polynomial of degree (l − 1)/2.

The main result of this section is the classification theorem in Theorem 9. In
order to prove the classification theorem, the following Proposition 9 will be ex-
tremely useful. Let Ci, with 1 ≤ i ≤ l+1, be the cyclic subgroups of order l of E[l].
Recall from Theorem 6 that the zeros of Φl(x, j(E)) are precisely the j-invariants of
isogenous curves Ẽ/Ci to E. The following theorem establishes the necessary links
between the zeros of Φl(x, j(E)) in some field extension Fpr , the map φr

p, and the
cyclic subgroups Ci.

Proposition 9. Let E be an ordinary elliptic curve over Fp with j-invariant j 6= 0
or 1728. Then

35

1. The polynomial Φl(x, j) has a zero ̃ ∈ Fpr if and only if the kernel C of the
corresponding isogeny E → E/C is a one-dimensional eigenspace of φr

p in
E[l], with φp the Frobenius endomorphism of E.

2. The polynomial Φl(x, j) splits completely in Fpr [x] if and only if φr
p acts as a

scalar matrix on E[l].

Proof. See [19, pages 236–238].

In the center of the SEA algorithm stands the following classification theorem.

Theorem 9 (Atkin). Let E be an ordinary elliptic curve defined over Fp with j-
invariant j 6= 0 or 1728. Let Φl(x, j) = h1h2 · · ·hs be the factorization of Φl(x, j) ∈
Fp[x] as a product of irreducible polynomials. Then there are the following possibil-
ities for the degrees of h1, . . . , hs:

1. (1, 1, . . . , 1) or (1, l). In either case we have t2−4p ≡ 0 (mod l). In the former
case we set r = 1 and in the latter case r = l.

2. (1, 1, r, r, . . . , r). In this case t2 − 4p is a square module l, r divides l− 1, and
φp acts on E[l] as a diagonal matrix

(
λ 0
0 µ

)
with λ, µ ∈ F∗l .

3. (r, r, . . . , r) for some r > 1. In this case t2 − 4p is a nonsquare modulo l, r
divides l+ 1, and the restriction of φl to E[l] has an irreducible characteristic
polynomial over Fl.

In all cases, r is the order of φp in the projective general linear group PGL2(Fl)
and the trace t of the Frobenius satisfies

t2 ≡ p(ζ + ζ−1)2 (mod l) , (16)

for some primitive r-th root of unity ζ ∈ Fl. Furthermore, the number of irreducible
factors s satisfies

(−1)s =
(p
l

)
. (17)

Proof. Write the reduced characteristic polynomial

χl(T) = T 2 − tlT + pl = T 2 − (λ+ µ)T + λµ = (T − λ)(T − µ) . (18)

In particular, we see that λµ ≡ p (mod l) and λ + µ ≡ t (mod l). It follows that
∆χ ≡ t2 − 4p ≡ (λ+ µ)2 − 4λµ ≡ (λ− µ)2 (mod l).

From Proposition 9, we know that the Frobenius endomorphism φp acts on E[l]
as A, a 2 × 2 matrix over Fl with a characteristic equation φ2

p − tφp + p = 0. We
consider the following cases:

36

1a. A is diagonalizable and has a double eigenvalue λ ∈ F∗l . Then A is similar
to a scalar matrix

(
λ 0
0 λ

)
, which in PGL2(Fl) reduces to the identity matrix.

Therefore, the degree of φp in PGL2(Fl) is 1, and Φl(x, j) splits completely in
Fp. This case corresponds to the first possibility in Theorem 9, with a splitting
type (1, 1, . . . , 1). Since λ = µ, it is clear that ∆χ ≡ t2 − 4p ≡ (λ − λ)2 ≡ 0
(mod l), as needed.

1b. A is not diagonalizable and has eigenvalues λ, µ ∈ F∗l . Then it must be the case
that λ = µ, or else A is diagonalizable. It follows that A is similar to a matrix(

λ 1
0 λ

)
. Then the degree of φp in PGL2(Fl) is l. This case also corresponds to

the first possibility in Theorem 9, but here the splitting type is (1, l). Here,
too, ∆χ ≡ t2 − 4p ≡ (λ− λ)2 ≡ 0 (mod l).

2. A is diagonalizable and has two distinct eigenvalues λ, µ ∈ F∗l . In particular,
λl−1 = µl−1 = 1. Then A is similar to the matrix

(
λ 0
0 µ

)
, and the order of

φp in PGL2(Fl) divides l − 1. This corresponds to the second possibility in
Theorem 9. In addition, since ∆χ ≡ t2−4p ≡ (λ−µ)2 (mod l) and λ−µ ∈ Fl,
we conclude that ∆χ is a square modulo l.

3. A is not diagonalizable and has two conjugate eigenvalues λ, µ ∈ Fl2 − Fl.
Here, A is similar to the matrix

(
0 1

−λµ λ+µ

)
. If instead we consider the action

of the Frobenius endomorphism as Ã, a 2 × 2 matrix with coefficients in Fl2 ,
then Ã is similar to the matrix

(
λ 0
0 µ

)
.

We claim that µ = λl. To see why, let d be some non-square modulo l. Then we
can write λ = α+β

√
d and µ = α−β

√
d for some α, β ∈ Fl. On the one hand

we have (
√
d)2l = (

√
d)2, and on the other hand we have (

√
d)l 6=

√
d. It follows

that (
√
d)l = −

√
d. Thus, λl = (α+ β

√
d)l = αl + βl(

√
d)l = α− β

√
d = µ, as

needed. Similarly, λ = µl.

Let r > 1 be the smallest integer such that λr ∈ F∗l , and note that µr = (λl)r =
(λr)l = λr, with the last equality given since λr ∈ Fl. In particular, r is also
the smallest integer such that µr ∈ F∗l . Therefore, Ãl is a scalar matrix with
coefficients in Fl, and we conclude that the order of the order of the Frobenius
endomorphism is r. The order r divides l2 − 1 but does not divide l − 1. It
follows that r divides l + 1.

In addition, since ∆χ ≡ t2−4p ≡ (λ−µ)2 ≡ 4β2d (mod l) and d is a non-square
in Fl, we conclude that ∆χ is also not a square modulo l. This corresponds to
the third and final possibility in Theorem 9.

We now prove Equation (16). From the discussion above we know that r is the
smallest integer such that λr = µr. Recall that λµ ≡ p (mod l) and λ + µ ≡ t
(mod l). Then λ2r ≡ pr (mod l), so that λ2 ≡ ζp (mod l) for some primitive r-th

37

root of unity ζ ∈ Fl. Furthermore,

t2 ≡ (λ+ µ)2 ≡ (λ+ p/λ)2 ≡ λ2 + 2p+ p2λ−2 ≡ ζp+ 2p+ ζ−1p

≡ p(ζ + ζ−1)2 (mod l) ,

as needed.
Lastly, for the proof of Equation (17), see [19, page 240].

Note that Theorem 9 is indeed a classification theorem. For each prime l with
l 6= p, we first determine the splitting type of Φl(x, j) by computing the degree of
g(x) = gcd(Φl(x, j), xp − x). By the theorem above, the degree of g(x) can only be
0, 1, 2, or l. If the g(x) is a constant, l is an Atkin prime. Otherwise it is an Elkies
prime.

Example 2. Recall the elliptic curve E1/F17 from the previous example. The j-
invariant of E1 is 1. The case of l = 2 is most easily treated by looking for points
of order 2, as we did in the previous example. We shall check which for the primes
3 and 5 if they are Atkin primes or Elkies primes. Relevant sage source code is
provided in Figure 7 in the appendix.

Let l = 3. We consider the modular polynomial Φ3(x, 1) in the polynomial ring
F17[x]. Using Section 3.7, direct computation reveals that

Φ3(x, 1) = x4 + 2618675x3 + 461887642896318x2 + 1854655034805885906044x
+ 1855426324856835686401

≡ x4 − 5x3 + 4x2 − x+ 5 (mod 17) .

We use the Euclidean division algorithm to find gcd
(
Φ3(x, 1), x17 − x

)
, where the

Euclidean domain in which we work is of course the polynomial ring F17[x]. The
division algorithm shows that

Φ3(x, 1) =
(
x3 + 7x2 + 3x+ 1

)
(x+ 5) .

Thus, we have found a linear factor of Φ3(x, 1), so we conclude that 3 is an Elkies
prime.

Now let l = 5. Again from Section 3.7, the modular polynomial Φ5(x, 1) is given
by

Φ5(x, 1) = x6

+ 1718552082309x5

+ 1413658123238627268557935x4

+ 280052346791868251027764047829968560x3

+ 6729059890180623379442403339472181961775x2

+ 53010293900891930869299353688832336926727674x
+ 141413228178305070529031327599431299228189982721

≡ x6 + 6x5 − 2x4 + 3x3 − 7x2 − 6x− 8 (mod 17).

38

Here, the Euclidean division algorithm reveals that gcd
(
Φ5(x, 1), x17 − x

)
= 1.

Hence, 5 in an Atkin prime. 3

In the following sections we describe how the knowledge of whether l is an Atkin
or an Elkies prime can be used to compute the reduced trace tl.

4.3 Atkin primes

We now turn our attention to the case of l an Atkin prime and follow the treatment
in [13], [6], and [19].

Our first goal is compute the degree r of φp in PGL2(Fl). The approach Atkin
took was to determine the smallest integer i > 1 such that

gcd
(
Φl(x, j), xpi − x

)
= Φl(x, j) . (19)

Thus, Fpi is the smallest field extension of Fp which contains all the roots of Φl(x, j).
From the second statement of Proposition 9, we conclude that i = r is the degree
of φp. From Theorem 9 we know that it suffices to check only integers i that divide
l + 1 and that satisfy (−1)(l+1)/i =

(p
l

)
. The possible values of i are tried with the

greatest common divisor computed each time using the Euclidean algorithm.
Once the order r of φp is determined, we need to compute the restriction modulo

l of the trace t. We shall construct a set Tl of such possible values tl. Equation (16)
is the main result we use here. There are φEul(r) options for the r-th roots of unity
ζ, where φEul is Euler’s totient function. By symmetry, there are φEul(r)/2 possible
values for ζ+ζ−1, and from Equation (16) the same is true for t2 (mod l). It follows
that there Tl includes at most φEul(r) possible values of tl.

Note that the primitive r-th roots of unity are elements of Fl2 . To see why, let ζ
be a primitive r-th root unity. Since r | (l+ 1), say with ar = l+ 1 for some integer
a, we know that ζ l2−1 = ζ(l+1)(l−1) = ζar(l−1) = 1, so ζ ∈ Fl2 . Let λ, µ ∈ Fl2 − Fl

be the two eigenvalues of φp. From Proposition 9, we know that r is the smallest
positive integer for which λr = µr. It follows that λ/µ = γ is a primitive r-th root
of unity. From the discussion above we conclude that γ ∈ Fl2 . Furthermore, once
we write Fl2

∼= Fl[
√
d] for some nonsquare d ∈ Fl, we can enumerate all the possible

φEul(r) values of γ as follows: let g be a generator for the multiplicative group of
Fl2 ; then γ = g(l2−1)/r is a primitive r-th root of unity, as well as any γi = γi where
i is relatively prime to r and satisfying 1 ≤ i < r.

Our next goal is to determine the members of Tl using the different γi. From
Equation (18) we know that t ≡ λ+µ (mod l) and p ≡ λµ (mod l). Using the same
nonsquare d ∈ Fl as above, we have λ = x1 + x2

√
d and µ = x1 − x2

√
d for some

(still unknown) xi ∈ Fl. Similarly, we have γi = gi1 + gi2

√
d, but here gi1 , gi2 ∈ Fl

39

can be computed. Additionally,

gi1 + gi2

√
d = γi =

λ

µ
=
λ2

λµ
=
x2

1 + dx2
2 + 2x1x2

√
d

p

=
x2

1 + dx2
2

p
+

2x1x2

p

√
d .

Solving for the first coordinate, we have pgi1 ≡ x2
1 + dx2

2 (mod l). Also, p ≡ λµ =
x2

1−dx2
2 (mod l). Thus, it follows that x2

1 = p(gi1 +1)/2. If x2
1 is not a square in Fl,

then we discard γi and move on to the next one. Otherwise, since t ≡ λ+ µ = 2x1

(mod l), add to Tl the values 2x1 and −2x1. We illustrate this procedure with the
following example.

Example 3. Consider again the elliptic curve E1/F17. We found in the previous
example that 5 is an Atkin prime. Next, we need to compute the order r of the
Frobenius endomorphism φp in PGL2(Fl). That is, we need to find the smallest
integer i > 1 such that Equation (19) holds.

From Theorem 9 we know that we need only consider i | (l+1). In other words,
i = 2, i = 3, or i = 6. Furthermore, 17 ≡ 2 (mod 5) is not a square in F5, so from
Equation 17, we know that 6/i must be odd. It follows that i 6= 3. The very first
step in the Euclidean algorithm reveals that Φ5(x, 1) does not divide x172 − x. In
fact, gcd

(
Φ5(x, 1), x172 − x

)
= 1. Therefore, we must have r = i = 6.

Next, we need to find the primitive 6th roots of unity in F5. We know that
these are elements in F52

∼= F5[
√

2], so we start by finding a generator g for the
multiplicative group F5[

√
2]∗. This group has only 24 elements, and one soon finds

that g = 3 +
√

2 is a generator. Thus, one primitive 6th root of unity is γ = g4 =
3 + 2

√
2 and the other is γ5 = 3 − 2

√
2. Note that in practice, the restriction of

finding l1, . . . , lr satisfying
∏r

i=1 li > 4
√
p means that we would only evaluate small

primes, say with li < 1000. Thus, it is easy to pre-compute and store generators of
the multiplicative groups Fli [

√
ki]∗, where ki is a nonsquare in Fli .

The two primitive 6th roots of unity are conjugates and share the same “real”
part g11 = g51 = 3. So in either case, we find that x2

1 = 17(3 + 1)/2 ≡ 4 (mod 5).
Clearly, 22 ≡ 32 ≡ 4 (mod 5), so x1 = ±2. Thus, we add the two possible traces
±2x1 = {1, 4} to T5. 3

As mentioned above, in reality one does not use the modular polynomial Φl

in the computations, but instead would use a related polynomial. Lercier, Lubicz,
and Vercauteren [13] discuss the so-called canonical modular polynomials as one
example. Schoof [19] notes that working with modular polynomials can be done
with a practical polynomial running time.

4.4 Elkies primes

We know turn out attention to Elkies primes. Elkies showed that if t2 − 4p is a
square modulo the prime l, then we may substitute the division polynomial fl of

40

degree (l2 − 1)/2 with a factor Fl of it of degree (l − 1)/2. This represents a very
significant reduction in computation time. We now trace this procedure.

Let E/Fp be the elliptic curve under consideration and l be an Elkies prime with
l 6= p. Recall from Corollary 1 that E[l] is the union of l+1 cyclic subgroups of order
l, with a pair-wise intersection at the identity element. Since l is an Elkies prime, we
can write the restricted characteristic polynomial of the Frobenius endomorphism
over Fl as

χl(T) = T 2 − tlT + pl = (T − λ)(T − µ) . (20)

Note that tl ≡ λ+ µ = λ+ pl/λ (mod l), so it suffices to find λ.
Suppose first that λ = µ. Then tl ≡ 2λ ≡ 2

√
pl (mod l). This corresponds

to Case 2 in explanation of Schoof’s algorithm in Page 32, where we found that
φp(P1) = [

√
pl]P1 = [λ]P1 for some nontrivial point P1 ∈ E[l]. That is, λ is an

eigenvalue of the Frobenius endomorphism. Let C1 = 〈P1〉 be the cyclic subgroup
of order l generated by P1. Then we have just found that C1 is stable under the
action of the Frobenius endomorphism: φp(C1) = C1.

Now suppose that λ 6= µ. Then from Theorem 9, we know that there exist
nontrivial points P1, P2 ∈ E[l] such that φp(P1) = [λ]P1 and φp(P2) = [µ]P2. Let
C1 = 〈P1〉 and C2 = 〈P2〉, and note that C1 6= C2. We with the previous case, it
follows immediately that both C1 and C2 are stable under the action of the Frobenius
endomorphism: φp(C1) = C1 and φp(C2) = C2.

We shall describe in Section 4.5 how this information allows for a construction
of a polynomial

Fl(x) =
∏

±P∈C1\{O}

(x− (P)X) , (21)

where (P)X denotes the x-coordinate of P . Note that only one point in each pair
±P is taken, as both share the same x-coordinate. The degree of Fl is thus (l−1)/2,
and it is a factor of fl.

From here, the algorithm proceeds in a similar way to Schoof’s algorithm. We
know that there exists a nonzero λ ∈ F∗l such that for any nontrivial point P =
(x, y) ∈ C1 \ {O} the equation φp(P) = [λ]P holds. Moreover, since l is a prime, λ
is unique. Note that for such a point P we necessarily have

xp = x− ψλ−1ψλ+1

ψ2
λ

.

Let h = ψ2
λ(xp−x)+ψλ−1ψλ+1. We shall make h into a univariate equation hX = 0

by reducing modulo, and substituting into, the curve equation. Then, it remains to
find a value λ such that gcd(hX , Fl) 6= 1.

As with Schoof’s algorithm, it suffices to check only values 1 ≤ λ ≤ (l − 1)/2
and then test the y-coordinate to separate λ from l − λ. Furthermore, we can also
use the results of Theorem 9 to narrow down further the possibilities for λ.

41

Example 4. We continue to analyze E1/F17. Recall that 3 is an Elkies prime for
this curve. The only two values we need to check are λ = 1 and λ = 2. We take
the case λ = 1 first. In Example 5 we shall see that F3 = x− 2. Therefore, we have
h = ψ2

1(x
17 − x) + ψ0ψ2 ≡ 0 (mod F3), so indeed the correct value of λ is 1. Then,

t = λ+ p/λ ≡ 0 (mod 3), as needed. 3

4.5 Factors of division polynomials

In this section we describe how to construct the polynomial Fl given in Equa-
tion (21). We shall approach this problem in two steps. First we find the first
coefficient of Fl (which is the sum of the roots of Fl, with the sign inverted). Then
we use the first coefficient to compute the other coefficients of Fl. Throughout this
section we assume that l is an Elkies prime different from p, the characteristic of
the underlying field. The discussion follows closely the ones in [6] and [19], though
here we omit many details that are beyond the scope of this work.

Given a non-supersingular elliptic curve in a short Weierstrass equation E/Fp :
y2 = x3 + a4x+ a6, we first compute the j-invariant as described in Equation (5):

j = jE = 1728
(

4a3
4

4a3
4 + 27a2

6

)
(5)

Since l is an Elkies prime, we know from Theorem 9 that the degree of the polynomial
g(x) = gcd(Φl(x, j), xp−x) is greater than zero, and that the roots of g(x) are in Fp.
Find one of the roots and denote it by ̃. By Theorem 6, there exists an isogenous
curve Ẽ : y2 = x3 + ã4x+ ã6 to E with j-invariant ̃. Furthermore, the kernel of the
isogeny is C, one of the l + 1 cyclic groups of order l of E[l]. Our immediate goal
is to find ã4 and ã6, given the knowledge of a4, a6, j, and ̃. This will allow us to
compute the first coefficient of Fl.

Recall from Section 3.5 that any elliptic curve E (with coefficients considered
as integers) is characterized by a complex number q = e2πiτ . Furthermore, for an
elliptic curve E corresponding to the parameter q as above, we have j(q) = jE , where
the expression on the left is from Equation (11) and the one on the right is from
Equation (5). In fact, the choice for the notation in Section 3.1, where the constants
in Equation (3) were introduced, stems from the reach theory of modular forms, from
which the formal sum j(q) is derived. This fact gives rise to the analytical treatment
we develop in this section.

For any Laurent series f(q) =
∑

n anq
n we define f ′(q) to be q df

dq =
∑

n nanq
n.

Then we have the following result.

Proposition 10. The following hold in ZJqK:

j′

j
= −E6

E4
,

j′

j − 1728
= −E

2
4

E6
,

j′′

j′
=

1
6
E2 −

1
2
E2

4

E6
− 2

3
E6

E4
.

(22)

42

Proof. See [19, page 244]

Note that the assumption that E/Fp is an ordinary curve over a field of large
characteristic ensures that the polynomials above do not vanish for the parameter
q associated with E.

The crucial observation here is that we already know from Equation (10) that
E4(q) ≡ −48a4 (mod B) and E6(q) ≡ 864a6 (mod B), where B is as defined in
Section 3.5. Thus, we can easily find j′. Furthermore, we can now express E2 in
terms of the ratio j′′/j′. Clearly, analogous relations exist for the (still unknown)
isogenous curve Ẽ : y2 = x3 + ã4x+ ã6, and the next theorem provides the impor-
tant missing link between the invariants of both curves. It relies on the following
observation: given a curve with a j-invariant j(q), there exists an isogenous curve
with a j-invariant j(ql) and the degree of the isogeny is l. As mentioned by Lercier
and Morain in [14], it is possible that this isogenous curve is not the one we were
looking for. That is, it is possible that ̃ 6= j(ql), in which case we may have to
discard the curve.

Theorem 10. Let l be a prime and Φl(x, y) ∈ Z[x, y] be the l-th modular polynomial.
Let ̃(q) = j(ql). Then Φl(j(q), ̃(q)) = 0. Furthermore, the following identities of
power series hold:

̃ ′ = −j
′Φx(j, ̃)
lΦy(j, ̃)

, (23)

j′′

j′
− l ̃

′′

̃ ′
= −j

′2Φxx(j, ̃) + 2lj′̃ ′Φxy(j, ̃) + l2̃ ′2Φyy(j, ̃)
j′Φx(j, ̃)

, (24)

where the subscripts x and y denote partial derivatives of Φl with respect to those
variables.

Proof. See [19, page 246].

When computing the invariants in Equations (23) and (24), one must make sure
that the partial derivatives do not vanish. In [19], Schoof explains that this happens
if (j, ̃) is a singular point of Φl(x, y) over Fp, the likelihood of which is extremely
low for large values of p. In the case where (j, ̃) is such a singular point, the curve
has to be discarded and a new curve must be picked.

Equation (23) is used to find ̃ ′. Then, we use the first two equalities in
Equation (22), as well as Equation (8) to find ã4, ã6, and E4(ql), E6(ql) (mod B).
Namely, we have

ã4 = − 1
48

̃ ′2

̃(̃− 1728)
, ã6 = − 1

864
̃ ′3

̃2(̃− 1728)
,

E4(ql) ≡ −48ã4 (mod B) , E6(ql) ≡ 864ã6 (mod B) ,
(25)

43

where

̃ ′ = −j
′Φx(j, ̃)
lΦy(j, ̃)

.

Next, we find p1 using Equations (9) and (24):

p1 =
∑

ζ∈µl,ζ 6=1

x(ζ; q)

=
l

2

(
j′′

j′
− l ̃

′′

̃ ′

)
+
l

4

(
E2

4(q)
E6(q)

− lE
2
4(ql)

E6(ql)

)
+
l

3

(
E6(q)
E4(q)

− lE6(ql)
E4(ql)

)
.

(26)

Recall that our first step in computing Fl is to find its first coefficient, the negated
sum of its roots. Reducing p1 modulo B, we have the sum of the x-coordinates of
points in the kernel of the isogeny. But the x-coordinates are precisely the roots of
Fl. Hence, we conclude that the first coefficient is −p1/2.

There are two important remarks to be made here. The first is that even though
the development above was complex analytic in nature, all of the computations can
in fact be carried out in Fp. The second remark is that in practice one does not use
the modular polynomials Φl, as their coefficients grow rapidly. There are alternative
polynomials that have similar properties to the modular polynomials while having
less and smaller coefficients. One example is Müller’s modular polynomials Gl(x, y)
[6].

The second step is to find the rest of the coefficients of Fl, using the knowledge
of p1. Recall from Section 3.5 that an elliptic curve E corresponds to a lattice
Λ = ω1Z + ω2Z for some ω1, ω2 ∈ C. Let Λ1 = ω1Z + lω2Z and consider the map
C/Λ → C/Λ1 given by z 7→ lz. Taking this modulo the prime ideal B, we obtain
the l-isogeny E → Ẽ discussed in Page 43.

However, Schoof finds it easier to work with a different isogeny. Define Λ2 =
1
l ω1Z+ω2Z and consider the map C/Λ→ C/Λ2 given by z 7→ z. Reducing this map
modulo B, we now have an isogeny E → E′ for some elliptic curve E′. Note that
Λ1 = lΛ2, so by Proposition 6, the two curves Ẽ and E′ are isomorphic. Thus, the
two isogenies have the same kernel, so the computation of p1 is unchanged. From
the equations of g2 and g3 in Theorem 3 we find that E′ : y2 = x3 + l4ã4x+ l6ã6.

Let ℘(z) be the Weierstrass ℘-function associated with Λ and write

℘(z) =
1
z2

+
∑

ω∈Λ\{0}

1
(z − ω)2

− 1
ω2

=
1
z2

+
∞∑

k=1

ckz
2k

for the Laurent series of ℘ at infinity. The coefficients ck are given by the following
recursion:

c1 = −a4

5
, c2 = −a6

7
, ck =

3
(k − 2)(2k + 3)

k−2∑
j=1

cjck−1−j , k ≥ 3 . (27)

44

We make similar computations for the Weierstrass ℘-function of Λ2 and find the
corresponding coefficients c̃i.

Lastly, we have this final theorem that allows us to obtain all the coefficients of
Fl in an efficient way.

Theorem 11. Let l be prime and Fl be the polynomial that vanishes on the x-
coordinates of the points in the kernel of the isogeny C/Λ → C/Λ2 with lattices as
defined above. Then

zl−1Fl(℘(z)) = exp

(
−1

2
p1z

2 −
∞∑

k=1

c̃k − lck
(2k + 1)(2k + 2)

z2k+2

)
. (28)

Proof. See [19, page 252]

By expanding the expressions on both sides of Equation (28), we can find the
coefficients of Fl(x) = x(l−1)/2 + a(l−3)/2x

(l−3)/2 + · · · + a0. We give here the first
three:

a(l−3)/2 = −p1

2
,

a(l−5)/2 =
p2
1

8
− c̃1 − lc1

12
− l − 1

2
c1 ,

a(l−7)/2 = −p
3
1

48
− c̃2 − lc2

30
+
c̃1 − lc1

24
p1 −

l − 1
2

c2 +
l − 3

4
c1p1 .

Schoof [19] remarks that the denominators in the expressions for ai are products of
small primes. Thus, over a large prime field there is no risk that the denominators
will vanish.

Example 5. We continue with the same curve E1/F17 as in the previous examples.
In this example we find F3. We recall the following facts: (i) 3 is an Elkies prime
for this curve; (ii) the j-invariant of E1 is 1; and (iii) gcd(Φ3(x, 1), x17− x) = x+ 5.
Note that the degree of F3 is (3− 1)/2 = 1, so only one coefficient, −p1/2, needs to
be found.

First we use Equations (8) and (22) to find

E4(q) ≡ 3 (mod B) , E6(q) ≡ −6 (mod B) , j′ = 2 .

From the gcd above, we know that we must set ̃ = −5. Next, we compute

Φx(j, ̃) ≡ −1 (mod 17) , Φy(j, ̃) ≡ 2 (mod 17) .

Using Equation (23) and then (25), we find

̃ ′ ≡ 6 (mod 17) , E4(ql) ≡ 3 (mod B) , E6(ql) ≡ 7 (mod B) .

45

In particular, the isogenous curve is Ẽ : y2 = x3 + x− 8.
The next step is to find j′′/j′ − l̃ ′′/̃ ′ using Equation (24). We first compute

Φxx(j, ̃) ≡ 6 (mod 17) , Φxy(j, ̃) ≡ −2 (mod 17) , Φyy(j, ̃) ≡ −1 (mod 17) .

It follows that

j′′

j′
− l ̃

′′

̃ ′
≡ −1 (mod 17) .

To assist in the computations above, some relevant sage source code is provided
in Figure 8 in the appendix.

Now we can find p1 = 4 using Equation (26). Therefore, F3 = x− 2. 3

4.6 Combining information

The final step in the algorithm is to combine the information given to us by the Atkin
and Elkies procedures. Unlike Schoof’s original algorithm, the Chinese remainder
theorem does not suffice here. The reason is that Atkin’s procedure provides us
with a set Tl of possible traces for each Atkin prime l, rather than a unique trace.
Therefore another approach must be taken.

One possibility is to consider more primes li than the minimum needed by the
condition

∏r
i=1 li > 4

√
p until there are sufficiently many primes to recover the

trace t. However, in practice a variant of the so-called baby-step/giant-step (BSGS)
algorithm is taken, which allows to compute t modulo the product of the Atkin
primes.

The BSGS algorithm, due to Shanks, is a time/space tradeoff algorithm and is
one of the generic methods of solving the DLP. As explained in [6], the algorithm’s
running time is in the order of O(

√
n), where n is the order of the underlying abelian

group. In this algorithm, one first computes a set of values (baby steps) and stores
them in a table. With the running time assumption as above, the space needed for
the table is also in the order of O(

√
n). Next one computes another set of values

(giant steps), each time comparing the current value with the ones stored in table.
When a match is found, the algorithm terminates and the DLP can be solved. The
variant used in the SEA algorithm is explained in much more detail below.

We follow the discussion in [6]. To find the trace t, we first compute the trace
tE modulo the product mE of the Elkies primes. This is done using the Chinese
remainder theorem. Next, we split the set of Atkin primes into two, one with a
product m1 and the other with a product m2. Using the Chinese remainder theorem
on each of these sets, we construct two sets S1 and S2 such that

t ≡ t1 (mod m1) with t1 ∈ S1 , t ≡ t2 (mod m2) with t2 ∈ S2 .

We choose the sets such that the each one has approximately the same number of
possible traces modulo the corresponding product m1 or m2.

46

Therefore, we can write

t = tE +mE(m1r2 +m2r1) (29)

for some integers r1 and r2. Taking the above equation modulo m1, we see that
t1 ≡ tE +mEm2r1 (mod m1). Similarly we can reduce modulo m2 and find that

r1 ≡
t1 − tE
mEm2

(mod m1) , r2 ≡
t2 − tE
mEm1

(mod m2) . (30)

Of course, the exact values of t1 and t2 is not yet known. The procedure henceforth
is to determine r1 and r2 and the recover t using Equation (29). This procedure is
reasonably fast due to the following lemma, which establishes a bound on the sizes
of r1 and r2.

Lemma 4. Consider Equation (29). If we choose 0 ≤ tE < mE and |r1| ≤ bm1
2 c,

then |r2| ≤ m2.

Proof. We can rewrite Equation (29) to have r2 = t−tE−mEm2r1
mEm1

. Then, recalling
that by assumption mEm1m2 > 4

√
p and |t| ≤ 2

√
p,

|r2| ≤
|t|+ |tE |+mEm2|r1|

mEm1
≤

2
√
p

mEm1
+

1
m1

+
m2

2

≤ m2

2
+

1
m1

+
m2

2
= m2 +

1
m1

.

Since m1, m2, and r2 are all integers, it follows that |r2| ≤ m2, as needed.

Recall that the order of group E(Fp) is p+1− t. Thus, for any Fp-rational point
P of E, we have [p + 1]P = [t]P = [tE + mE(m1r2 + m2r1)]P . Therefore, we can
write [p + 1 − tE]P − [r1m2mE]P = [r2m1mE]P . We shall consider the expression
on the left-hand side as the one defining the baby steps. The expression on the right
is the one defining the giant steps.

Specifically, we first pick a random point P on E/Fp. Then we go over the
possible values of t1. For each such value, we use Equation (30) to choose r1 such
that |r1| ≤ bm1

2 c. The next step is to compute Qr1 = [p + 1 − tE]P − [r1m2mE]P
and store the tuple (Qr1 , r1) in a table. It is important to keep the table sorted to
speed up the procedure. Up to here is the analogue of the baby step part.

Next, we iterate over the possible values of t2. From Lemma 4 we only that the
value of r2 we seek satisfies |r2| ≤ m2. We also know that r2 satisfies Equation (30).
This allows us to construct a set Rt2

2 of possible r2 values corresponding to t2. For
each such possible value, we compute Q′

r2
= [r2m1mE]P and compare it to the

values we stored in the table. We continue until a match is found.
Once a match is found, we can recover the value t from Equation (29). Then, the

order of the group of Fp-rational points is determined from Hesse’s equation (13).
Blake, Seroussi, and Smart [6] note that in practice there are still some tests to
be made to make sure we indeed have the correct group order and that the group
suffices for cryptographic purposes.

47

4.7 Complete SEA algorithm

The running time of the SEA algorithm is in the order of O(log2+2µ p) and the storage
requirement is in the order of O(log2 p), as discussed in [13].

We provide here the full SEA algorithm in pseudo-code, adapted from and ex-
panded on the one in [6]. The algorithm we provide is not efficient, in the sense that
some of the computations are done multiple times and the use of method parameters
is redundant and space-consuming. This was done to keep the important parts of
the algorithm free of unnecessary clutter.

The main SEA algorithm is as given in Figure 5, where the first step of the Elkies
procedure (i.e., finding a factor of the division polynomial) is the algorithm given
in Figure 4. We assumed that we have functions with the following signatures:

1. NextPrime(p)
Input: A prime p.
Output: The smallest prime number larger than p.

2. FindNonSquareInFiniteField(l)
Input: A prime l.
Output: An integer 0 < d < l with

(
d
l

)
= −1.

3. GeneratorOfMultiplicativeGroup(l, d)
Input: A prime l and an integer d with

(
d
l

)
= −1.

Output: A generator g of Fl[
√
d]∗.

GetFactorOfDivisionPolynomial(l, E, p)
Input: An Elkies prime l and an elliptic curve E over a prime field Fp.
Output: A factor Fl(x) of degree d = (l − 1)/2 of fl(x).

1. determine j from Equation (5)
2. determine E4(q), E6(q) mod B from Equation (8)
3. determine j′ from Equation (22)
4. ̃← a root of Φl(x, j) in Fp

5. determine ̃ ′ from Equation (23)
6. determine j′′/j′ − l̃ ′′/̃ ′ from Equation (24)
7. determine E4(ql), E6(ql) mod B from Equation (25)
8. determine p1 from Equation (26)
9. determine ck and c̃k for k ≤ d from Equation (27)

10. determine Fl from Equation (28)
11. return Fl(x)

Figure 4: Factor of division polynomial

48

SchoofElkiesAtkinAlgorithm(E, p)
Input: An elliptic curve E over a prime field Fp.
Output: The order of E(Fp).

1. M ← 1, l← 2, Ap ← {}, Ep ← {}
2. determine j from Equation (5)
3. while M < 4

√
p do

4. if deg(gcd(Φl(x, j), xp − x)) = 0 then // Atkin prime
5. T ← {}
6. determine r from Theorem 9
7. d← FindNonSquareInFiniteField(l)
8. g ← GeneratorOfMultiplicativeGroup(l, d)
9. S ← {gi(l2−1)/r | gcd(i, r) = 1}

10. for each γi ∈ S do

11. write γi = gi1 +
√
dgi2

12. z ← p(gi1 + 1)/2 (mod l)
13. if

(
z
l

)
= 1 then

14. x←
√
z (mod l)

15. T ← T ∪ {2x,−2x}
16. Ap ← Ap ∪ (T, l)
17. else // Elkies prime
18. Fl(x)← GetFactorOfDivisionPolynomialFactor(l, E, p)
19. find λ such that gcd(ψ2

λ(xp − x) + ψλ−1ψλ+1, Fl(x)) 6= 1
20. t← λ+ λ/p (mod l)
21. Ep ← Ep ∪ {(t, l)}
22. M ←M × l
23. l← NextPrime(l)
24. recover t using the sets Ap and Ep, as explained in Section 4.6
25. return p+ 1− t

Figure 5: SEA algorithm

49

A Appendix

We present in the appendix sage code that was applied in Examples 1, 2, and 5.

sage: #== General Definitions ==#

sage: R = IntegerModRing(17)

sage: x = PolynomialRing(GF(17), ’x’).gen()

sage: E1 = EllipticCurve([GF(17)(0),0,0,1,2]); E1

Elliptic Curve defined by y^2 = x^3 + x + 2 over Finite Field of size 17}

sage: j = E1.j_invariant(); j

1

sage: P1 = PolynomialRing(GF(17), ’x’); x = P1.gen()

sage: f5 = 5*x^12 - 6*x^10 - 5*x^9 - 3*x^8 + 4*x^7 - 2*x^6 + 2*x^5 - 2*x^4 - 6*x^3 - 7*x^2 + x - 7

sage: # F_{17}[a]/(f_5) is the univariate ring we work over.

sage: # It is not taken modulo the curve equation, so we have to carry the y’s manually.

sage: F17f5 = P1.quotient(f5, ’a’); a = F17f5.gen(); F17f5

Univariate Quotient Polynomial Ring in a over Finite Field of size 17 with modulus 5*x^12

+ 11*x^10 + 12*x^9 + 14*x^8 + 4*x^7 + 15*x^6 + 2*x^5 + 15*x^4 + 11*x^3 + 10*x^2 + x + 10

sage: #== Computing lambda ==#

sage: # numeratorOfLambda is the numerator of lambda, divided by y

sage: numeratorOfLambda = 32*(a^3 + a + 2)^((17^2+3)/2) - 4*(a^6 + 5*a^4 + 40*a^3 - 5*a^2 - 8*a - 33)

sage: denominatorOfLambda = 32*(a^3 + a + 2)^2*(a^(17^2) - a) + 8*(a^3 + a + 2)*(3*a^4 + 6*a^2 + 24*a - 1)

sage: # lambda5 is lambda, divided by y

sage: lambda5 = numeratorOfLambda/denominatorOfLambda; lambda5

9*a^11 + 14*a^10 + 14*a^9 + 14*a^8 + 15*a^7 + 12*a^6 + a^5 + 15*a^4 + 10*a^3 + 9*a^2 + 4*a + 6

sage: #== Computing the expression for y_5 ==#

sage: # y5 is y_5, divided by y

sage: y5 = lambda5*(2*a^(17^2) - lambda5^2*(a^3 + a + 2) + a - (3*a^4 + 6*a^2 + 24*a - 1)

/(4*(a^3 + a + 2))) - (a^3 + a + 2)^((17^2-1)/2); y5

14*a^11 + 11*a^10 + 11*a^9 + 6*a^8 + 3*a^7 + 7*a^6 + 12*a^5 + 6*a^4 + 15*a^3 + 11*a^2 + 15*a + 13

sage: #== Comparing y_5 with y^{17} ==#

sage: (a^3 + a + 2)^8 + y5

0

Figure 6: Example 1 (sage code)

50

sage: # Phi_3(x,j=1):

sage: c1 = R(2232)

sage: c2 = R(-1069956)

sage: c3 = R(3686400)

sage: c4 = R(2587918086)

sage: c5 = R(8900222976000)

sage: c6 = R(452984832000000)

sage: c7 = R(-770845966336000000)

sage: c8 = R(1855425871872000000000)

sage: a4 = 1 # Coefficient of x^4

sage: a3 = R(-1+c1+c2+c3) # Coefficient of x^3

sage: a2 = R(c1+c4+c5+c6) # Coefficient of x^2

sage: a1 = R(c2+c5+c7+c8) # Coefficient of x

sage: a0 = R(1+c3+c6+c8) # Scalar

sage: Phi3 = a4*x^4 + a3*x^3 + a2*x^2 + a1*x + a0; Phi3

x^4 + 12*x^3 + 4*x^2 + 16*x + 5

sage: # This shows that Phi_3 is an Elkies prime for E_1.

sage: # The root of the linear factor is the j-invariant of an isogenous curve.

sage: Phi3.factor()

(x + 5) * (x^3 + 7*x^2 + 3*x + 1)

sage: # Phi_5(x,j=1):

sage: d1 = R(3720)

sage: d2 = R(-4550940)

sage: d3 = R(2028551200)

sage: d4 = R(-246683410950)

sage: d5 = R(1963211489280)

sage: d6 = R(1665999364600)

sage: d7 = R(107878928185336800)

sage: d8 = R(383083609779811215375)

sage: d9 = R(128541798906828816384000)

sage: d10 = R(1284733132841424456253440)

sage: d11 = R(-441206965512914835246100)

sage: d12 = R(26898488858380731577417728000)

sage: d13 = R(-192457934618928299655108231168000)

sage: d14 = R(280244777828439527804321565297868800)

sage: d15 = R(5110941777552418083110765199360000)

sage: d16 = R(36554736583949629295706472332656640000)

sage: d17 = R(6692500042627997708487149415015068467200)

sage: d18 = R(-264073457076620596259715790247978782949376)

sage: d19 = R(53274330803424425450420160273356509151232000)

sage: d20 = R(141359947154721358697753474691071362751004672000)

sage: b6 = 1 # Coefficient of x^6

sage: b5 = R(-1+d1+d2+d3+d4+d5) # Coefficient of x^5

sage: b4 = R(d1+d6+d7+d8+d9+d10) # Coefficient of x^4

sage: b3 = R(d2+d7+d11+d12+d13+d14) # Coefficient of x^3

sage: b2 = R(d3+d8+d12+d15+d16+d17) # Coefficient of x^2

sage: b1 = R(d4+d9+d13+d16+d18+d19) # Coefficient of x

sage: b0 = R(1+d5+d10+d14+d17+d19+d20) # Scalar

sage: Phi5 = b6*x^6 + b5*x^5 + b4*x^4 + b3*x^3 + b2*x^2 + b1*x + b0; Phi5

x^6 + 6*x^5 + 15*x^4 + 3*x^3 + 10*x^2 + 11*x + 9

sage: # This shows that 5 is an Atkin prime for E_1.

sage: gcd(Phi5, x^17 - x)

1

Figure 7: Example 2 (sage code)

51

sage: #== Finding the partial derivatives of Phi_3, evaluated at j = 1 and \tilde{j} = -5 ==#

sage: tj = R(-5)

sage: Phi3x = R(4*j^3 - 3*j^2*tj^3 + 3*c1*j^2*tj^2 + 2*c1*j*tj^3 + 3*c2*j^2*tj + c2*tj^3

+ 3*c3*j^2 + 2*c4*j*tj^2 + 2*c5*j*tj + c5*tj^2 + 2*c6*j + c7*tj + c8); Phi3x

16

sage: Phi3y = R(4*tj^3 - 3*tj^2*j^3 + 3*c1*tj^2*j^2 + 2*c1*tj*j^3 + 3*c2*tj^2*j + c2*j^3

+ 3*c3*tj^2 + 2*c4*tj*j^2 + 2*c5*tj*j + c5*j^2 + 2*c6*tj + c7*j + c8); Phi3y

2

sage: Phi3xx = R(12*j^2 - 6*j*tj^3 + 6*c1*j*tj^2 + 2*c1*tj^3 + 6*c2*j*tj + 6*c3*j + 2*c4*tj^2

+ 2*c5*tj + 2*c6); Phi3xx

6

sage: Phi3yy = R(12*tj^2 - 6*tj*j^3 + 6*c1*tj*j^2 + 2*c1*j^3 + 6*c2*tj*j + 6*c3*tj + 2*c4*j^2

+ 2*c5*j + 2*c6); Phi3yy

16

sage: Phi3xy = R(-9*j^2*tj^2 + 6*c1*j^2*tj + 6*c1*j*tj^2 + 3*c2*j^2 + 3*c2*tj^2 + 4*c4*j*tj

+ 2*c5*j + 2*c5*tj + c7); Phi3xy

15

Figure 8: Example 5 (sage code)

52

References

[1] ANSI, Public key cryptography for the financial services industry: The elliptic
curve digital signature algorithm (ECDSA), Tech. Report ANSI X9.62, Ameri-
can National Standards Institute, 2005.

[2] Roberto M. Avanzi, Generic algorithms for computing discrete logarithms,
Handbook of Elliptic and Hyperelliptic Curve Cryptography (Henri Cohen and
Gerhard Frey, eds.), Chapman & Hall/CRC, 2006, pp. 477–494.

[3] Roberto M. Avanzi and Tanja Lange, Introduction to public-key cryptography,
Handbook of Elliptic and Hyperelliptic Curve Cryptography (Henri Cohen and
Gerhard Frey, eds.), Chapman & Hall/CRC, 2006, pp. 1–15.

[4] Roberto M. Avanzi and Nicolas Thériault, Index calculus, Handbook of Elliptic
and Hyperelliptic Curve Cryptography (Henri Cohen and Gerhard Frey, eds.),
Chapman & Hall/CRC, 2006, pp. 495–509.

[5] Elaine Barker, William Barker, William Burr, William Polk, and Miles Smid,
Recommendation for key management—part 1: General (revised), Tech. Report
NIST Special Publication 800-57, National Institute of Standards and Technol-
ogy, May 2006.

[6] Ian Blake, Gadiel Seroussi, and Nigel Smart, Elliptic curves in cryptography,
Undergradute Texts in Mathematics, Springer-Verlag, 2006.

[7] J.W.S. Cassels, Diophantine equations with special reference to elliptic curves,
Journal of London Mathematical Society 41 (1966), 193–291.

[8] Whitfield Diffie and Martin E. Hellman, New directions in cryptography, IEEE
Transactions on Information Theory IT-22 (1976), no. 6, 644–654.

[9] Christophe Douce and Tanja Lange, Arithmetic of elliptic curves, Handbook
of Elliptic and Hyperelliptic Curve Cryptography (Henri Cohen and Gerhard
Frey, eds.), Chapman & Hall/CRC, 2006, pp. 267–302.

[10] Gerhard Frey and Tanja Lange, Transfer of discrete logarithms, Handbook of
Elliptic and Hyperelliptic Curve Cryptography (Henri Cohen and Gerhard Frey,
eds.), Chapman & Hall/CRC, 2006, pp. 529–543.

[11] Serge Lang, Elliptic curves: Diophantine analysis, A Series of Comprehensive
Studies in Mathematics 231, Springer-Verlag, 1978.

[12] , Elliptic functions, 2nd ed., Gradute Texts in Mathematics, Springer-
Verlag, 1987.

53

[13] Reynald Lercier, David Lubicz, and Frederik Vercauteren, Point counting on
elliptic and hyperelliptic curves, Handbook of Elliptic and Hyperelliptic Curve
Cryptography (Henri Cohen and Gerhard Frey, eds.), Chapman & Hall/CRC,
2006, pp. 407–453.

[14] Reynald Lercier and François Morain, Counting points on elliptic curves
over fpn using couveignes’s algorithm, 1996, 〈http://citeseer.ist.psu.edu/
article/lercier96counting.html〉.

[15] Julio López and Ricardo Dahab, An overview of elliptic curve cryptography,
Institute of Computing, State University of Campinas, May 2000.

[16] Alfred J. Menzes, Paul C. van Oorschot, and Scott A. Vanstone, Handbook of
applied cryptography, CRC Press, 1996.

[17] Volker Müller, Ein algorithmus zur bestimmung der punktanzahl elliptischer
kurven über endlichen körpern der charakteristik größer drei, Ph.D. thesis, Saar-
landes University, Saarbrücken, 1995.

[18] René Schoof, Elliptic curve over finite fields and the computation of square roots
mod p, Mathematics of Computation 44 (1985), no. 170, 483–495.

[19] , Counting points on elliptic curves over finite fields, Journal de Théorie
des Nombres 7 (1995), 219–254.

[20] Joseph H. Silverman, The arithmetic of elliptic curves, Gradute Texts in Math-
ematics, Springer-Verlag, 1986.

[21] , Advanced topics in the arithmetic of elliptic curves, Gradute Texts in
Mathematics, Springer-Verlag, 1994.

[22] William Stein, David Kohel, and Iftikhar Burhanuddin, Module of super-
singular points, 2006, 〈http://sage.math.washington.edu/home/burhanud/
SSMod/ssmod.py.txt〉.

[23] Frederik Vercauteren, The SEA algorithm in characteristic 2, 〈http://
citeseer.ist.psu.edu/663372.html〉.

54

